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ABSTRACT

In the context of mobile-based user-interface (UI) attacks, the com-
mon belief is that clickjacking is a solved problem. On the contrary,
this paper shows that clickjacking is still an open problem for mo-
bile devices. In fact, all known academic and industry solutions are
either not effective or not applicable in the real-world for backward
compatibility reasons. This work shows that, as a consequence,
even popular and sensitive apps like Google Play Store remain, to
date, completely unprotected from clickjacking attacks.

After gathering insights into how apps use the user interface, this
work performs a systematic exploration of the design space for an
effective and practical protection against clickjacking attacks. We
then use this exploration to guide the design of CLICKSHIELD, a new
defensive mechanism. To address backward compatibility issues,
our design allows for overlays to cover the screen, and we employ
image analysis techniques to determine whether the user could be
confused. We have implemented a prototype and we have tested
it against CLICKBENCH, a newly developed benchmark specifically
tailored to stress-test clickjacking protection solutions. This dataset
is constituted by 104 test cases, and it includes real-world and
simulated benign and malicious examples that evaluate the system
across a wide range of legitimate and attack scenarios. The results
show that our system is able to address backward compatibility
concerns, to detect all known attacks (including a never-seen-before
real-world malware that was published after we have developed
our solution), and it introduces a negligible overhead.
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1 INTRODUCTION

Mobile devices are widespread and they have been subject to a
significant corpus of research. One main area of works is about
offensive research, which focuses on attacking these devices to
highlight vulnerabilities. Within this context, a number of recent
works has specifically focused on the mobile user-interface (UI).
Many of these works have focused on the problem of mobile phish-
ing attacks [4, 6, 9, 14, 20]. In such attacks, the user is tricked by a
malicious app into inserting sensitive input (e.g., usernames, pass-
words) into a window that the malicious app controls. The core
issue enabling these attacks is that users cannot understand whether
they are interacting with a legitimate app (like a banking app) or a
malicious one that is spoofing the legitimate Ul

Another class of attacks against user-interfaces (Ul) is clickjack-
ing, which is the focus of this paper. Such attacks work by creating
an opaque overlay that completely covers a security-sensitive app
(such as the Settings app): while the user believes she is interacting
with an innocuous overlay, she is in fact interacting with the target
app on the bottom (and she could unknowingly grant powerful
permissions to a malicious app).

These attacks have been known for several years [1, 2, 17, 24,
26, 30, 31] and, in response, Google has implemented a security
mechanism called “obscured flag” Such protection allows apps
to detect whether, at the moment of the click, a sensitive widget
button was covered by an overlay and, if that is the case, apps have a
chance to refuse the click. Google adopted this security mechanism
to protect the most security-sensitive of its Android apps, such as
the Settings app.

However, a recent work called Cloak & Dagger (C&D from now
on) showed how this defense mechanism can be bypassed [10]. The
authors of this work developed a new attack, called context-hiding
attack, which consists in covering the entire screen except the target
button: In this way, the obscured flag protection does not trigger
and, at the same time, the attacker is still able to confuse the user
by hiding all the relevant security-sensitive context information.

In response to this attack, Google implemented an additional
defensive mechanism: in recent versions of Android, when users
browse to the accessibility service menu (the main target of the
C&D work), all overlays drawn on top disappear. To the best of our
knowledge, this hide overlays defense mechanism is sufficient to
defeat clickjacking attacks (including C&D), mainly because the
attacker does not have any possibility to confuse the user anymore.
The common belief is thus that clickjacking is overall a solved
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problem in mobile devices context. This paper, however, shows that
this is not the case.

Clickjacking on mobile is an open problem. Clickjacking is
not a one-off bug—it is caused by a design issue—and it is very chal-
lenging to prevent in the general case. In fact, the “hide overlays”
defense from Google, while being effective, has two fundamen-
tal problems. First, we have identified several popular apps (with
millions of users) whose core functionality—to act as a screen filter—
specifically relies on creating persistent on-top fullscreen overlays.
Thus, Google’s defense cannot be widely adopted due to backward
compatibility issues—it would in fact affect the user experience of
all these apps with frequent interferences and flickering problems.
Second, as we will show in this paper, Google deployed this fix to
protect parts of the Settings app, but many other apps including
Google own apps, such as the Google Play Store, and other popular
third-party apps are left completely unprotected. We believe this
is due to the backward compatibility concerns mentioned above.
We note that the best defense available to third-party apps, the
obscured flag, would also break the user experience for millions of
users.

The design space for a practical defense. Solving this problem
in the general case is very challenging since we need to design a
protection system that is effective and, at same time, it does not
break compatibility with existing apps. There are multiple proposed
solutions, from both the academic and industry communities: We
show that none of these are both effective (in preventing attacks)
and practical (especially when applied in all new existing attack
scenarios described in this paper).

To prevent the design of another problematic solution, in this
paper we first gather insights on how apps use the user interface,
and we then systematically explore the design space by drawing a
number of observations that, independently from a given proposed
solution, we believe must all be taken into account when designing
a system that is both effective and practical. This exploration guided
us to the design of a new protection mechanism, dubbed Crick-
SHIELD. Our defense differs from existing ones because it tackles
the problem of clickjacking at its root: the possibility of deceiving
the user. We thus do not focus on the many technical ways single
overlays can be created—too many to be properly enumerated—and
we focus instead of the net effect that these overlays have on what
the user actually sees on the screen. To this end, we devised effi-
cient techniques based on image analysis to answer questions such
as is what the user seeing different than what the target app would
have liked to display? Was the view from the target app modified?
If yes, was it modified in a uniform way so that the full (potentially
security-related) context is still available for the user?

We have implemented a prototype of this system, and we have
tested it against CLICKBENCH, a newly developed benchmark specif-
ically tailored to stress-test clickjacking protection solutions. This
dataset is constituted by 104 test cases, and it includes real-world
and simulated benign and malicious examples that evaluate the
system across a wide range of legitimate and attack scenarios. We
note that some of these test cases have been developed specifically
to evade our own system and that we included in the benchmark
even a never-seen-before real-world malware sample that was made

public after we had finalized our prototype. Nonetheless, CLick-
SHIELD is able to detect all attack scenarios without being affected
by backward compatibility concerns. Moreover, our proposal has a
negligible performance impact, and it is thus suitable for adoption
on mobile devices. We believe CLICKSHIELD to be the first practical
approach that has the potential to fully eradicate clickjacking on
Android.

In summary, this paper makes the following contributions:

e We highlight how clickjacking on mobile devices is still an
open problem and how the attack surface is much wider than
what previously thought.

e We show how current defense mechanisms fall short and
we discuss the main challenge Google is facing: backward
compatibility issues, which would break core functionality
of popular apps used by millions of users.

o We gather insights on how apps use the user interface and we
systematically explore the design space for an effective and
practical defense mechanism. We build on these insights to
design CLICKSHIELD, a novel defense mechanism for mobile
clickjacking.

e We evaluate CLICKSHIELD against CLICKBENCH, the first
benchmark dataset for clickjacking solutions. We show that
our system is effective at stopping the threat of clickjacking
and it addresses backward compatibility concerns.

To ease the reproducibility of this work, we will publicly release
our prototype and our benchmark dataset.

2 BACKGROUND ON ANDROID Ul

In Android, third-party apps having the SYSTEM_ALERT_WINDOW
permission have the ability to create arbitrary windows, also known

as overlays, that are rendered on top of the current activity. For

apps hosted on the official Google Play Store, this permission is

automatically granted, without the user being notified about it.

Apps have complete control over the overlays they create. In partic-
ular, they can control their size and position, and whether they are

opaque or (semi-)transparent. Apps can also create overlays that

are either clickable (i.e., when the user clicks on them, the overlay

will capture the click) or passthrough (i.e., the click is not captured

by the overlay and it is passed to the overlay or activity beneath

it). Starting from Android 8.0, apps are forbidden to draw overlays

on top of the lock screen, the status bar, and the navigation bar.

While these new constraints are an effective protection against ran-
somware (because it does not have a chance to completely lock the

device), they have no impact against clickjacking attacks because

overlaying these sensitive Ul components is not relevant.

3 CLICKJACKING ON ANDROID

This section discusses current techniques to perform clickjacking
on Android and the security mechanisms in place to prevent them.

Traditional clickjacking attack. The essence of a clickjacking
attack is about confusing the user and luring her to perform a “click”
action so that the attacker achieves her malicious goals (e.g., addi-
tional permissions are granted). Traditional clickjacking attacks,
introduced in [17], consist in the following steps: 1) The attacker
creates an overlay that is fullscreen, opaque, and passthrough; 2)



Unbeknownst to the user, the attacker spawns the victim app (e.g.,
the Android Settings app) below the opaque overlay; 3) The mali-
cious app lures the user to click on a specific point on the screen;
and 4) The click passes through the opaque overlay and reaches a
security-sensitive button beneath the malicious app, at which point
the attack is completed.

While the steps above focus on hijacking one single click, the
recent Cloak & Dagger work [10] showed how this technique can
be easily extended to a multi-click scenario: by using a combina-
tion of flags when creating the overlays, the attacker can create a
side-channel to infer that the user has just clicked where she was
supposed to click; upon the reception of this “signal,” it can then
modify the on-top overlays to lure the user to click on the next
button. Of course, the higher the number of clicks required, the less
practical the attack is. However, the authors of C&D work showed
through a user study that even an attack requiring three clicks is
very practical.

Obscured flag defense. To protect from these threats, Google im-
plemented a mechanism to allow apps (both Google’s own and
third-party ones) to protect themselves. This mechanism, called
“obscured flag,” works by signaling (via a boolean flag) to Button
widgets that, when the click was performed, an overlay was cov-
ering (or “obscuring”) it, independently from whether the on-top
overlay is opaque or transparent. This is how the Android frame-
work signals to an app the possibility of an on-going clickjacking
attack. Google adopted this mechanism to protect its most sensitive
Android apps, such as the Settings app.

Context-hiding attack. Although the obscured flag mechanism
raises the bar for attacks, it was recently discovered to be easily
bypassable, with a technique called “context-hiding attack” [10].
The key observation behind this technique is that as long as an
attacker can hide the real, security-sensitive context surrounding a
generic OK button, it is easy to lure the user to click on it. Thus, by
covering the entire screen except the target OK button, the obscured
flag defense can be bypassed.

Hide overlays defense. Finally, to counter the threat of context-
hiding attack, Google implemented a new defense mechanism to
prevent it: in modern versions of Android (from Android 7.1.2),
when the user browses to the accessibility service menu or permis-
sion settings, all overlays are hidden, thus removing the possibility
for the user to be confused (and for malware to mount an attack).

Current Limitations. The “Hide overlay” defense is very effective:
Since all the on-top overlays are hidden, there is no chance for the
attacker to confuse the user, and, to the best of our knowledge,
clickjacking is thus prevented. However, this mechanism is very ag-
gressive and, as we will describe in Section 6, it has two limitations.
First, it is too powerful to be made available to third-party apps,
which thus remain unprotected. Second, it creates a number of
severe backward compatibility issues, which would break the main
functionality of apps installed by millions of users. The obscured
flag mechanism is affected by similar backward compatibility issues.
It is in fact not uncommon to read about users puzzled by usability
problems due to these mechanisms [27]. This aspect pushed Google
to adopt this security mechanism only to protect the most sensi-
tive parts of the Android system (such as the permission granting

popups), leaving many sensitive Google-owned apps (such as the
Google Play Store app) completely unprotected.

4 NEW ATTACK SCENARIOS

This section discusses known and several previously unknown
clickjacking attack scenarios. The feasibility of these attacks has
been tested on a fully updated Nexus 5X running the latest ver-
sion of Android (8.0) available at the time of writing. For the sake
of completeness, we include in this discussion previously known
examples that are now prevented by currently deployed security
mechanisms. The list of attacks, their feasibility, and their novelty
are systematize in Table 2, in the Appendix.

Previous works have shown how clickjacking can be used to
lure the user to unknowingly grant additional permissions (e.g., the
“location” permission) or even to enable accessibility service shown
to be enough to fully compromise the device [10]. Google has now
fixed these attacks by implementing the “hide overlays” defense
mechanism.

Another related work [29] has shown how clickjacking can be
used to bypass several permissions, such as capturing images and
videos (Target App (TA): Camera app), getting access to contacts
(TA: Contact app), record sound (TA: SoundRecorder), send text
messages (TA: Messaging app), or even installing and uninstalling
third-party apps (TA: Package Installer). Among these, attacks
against the Package Installer are now protected via the obscured
flag mechanism. However, even this last case is still vulnerable
to the context-hiding attack. According to our tests, all the other
attack venues are still practical on the latest version of Android.
This is particularly worrisome when considering that this related
work has been published two years ago, in mid 2016.

In this paper we explore additional attack scenarios, and our
findings are alarming.

Google Play Store app. We found that even Google’s own Play
Store app is completely vulnerable even to traditional clickjacking
attacks. In fact, it is not even protected by the obscured flag mech-
anism, making its exploitation trivial. This is problematic since
this app has the capability of installing, uninstalling, and opening
arbitrary apps installed from the Play Store.

An attacker can cause the Play Store app to open and “browse” to
an attacker-chosen app by sending an ACTION_VIEW Intent and a
URI with the market:// scheme (e.g., market://details?id=mal-
icious.com). If the app is not installed, the Play Store will show,
in its first activity, the “Install App” button, making it possible to
install an arbitrary app from the Play Store by hijacking one click.
After the app is installed, the malicious app can send the same
Intent: this time, since the app is already installed, the Play Store
app will show an “open app” button. Thus, by hijacking two clicks
only, an attacker can install and open an arbitrary app from the Play
Store. To make things worse, we have found that if the attacker-
chosen app targets an old Android SDK, the full list of permission
is shown to the user at install-time (in contrast to the current grant
at run-time permission model). Unfortunately, we have found that
the “OK” button to confirm these permissions is also vulnerable
to clickjacking. In summary, by hijacking three clicks, an attacker
can lure the user to install an arbitrary app from the store with
arbitrary permissions.



Chrome Browser. The mobile version of Chrome Browser is vul-
nerable as well. An attacker can simply open an arbitrary webpage
by sending an ACTION_VIEW specifying the target webpage’s URL
as data. If the user is logged in to the target site, the attacker can use
clickjacking to implement traditional web clickjacking attacks (e.g.,
to click on Facebook’s likes), bypassing all modern web-related
defense mechanisms (such as frame busting).

Gmail. Google’s Gmail app is vulnerable. By using an ACTION_SEND
Intent, by setting com. google.android.gm as target package, and
by setting the EXTRA_EMAIL, EXTRA_SUBJECT, and EXTRA_TEXT
extra fields, an attacker can spawn the Gmail app with a pre-filled
email (including the To:, Subject:, and content of the email). The
attacker can then hijack a click to the “Send” button, with the net
effect of being able to send emails on behalf of the victim, which
could be useful to mount social engineering and targeted attacks.

WhatsApp and Signal. These applications are very popular among
the Instant Messaging (IM) apps: WhatsApp is one of the most used
messaging application across Android users while Signal is consid-
ered the de-facto standard for secure messaging. Both allow the user
to perform end-to-end encrypted communications. Unfortunately,
these sensitive apps are also vulnerable to clickjacking.

For what concerns WhatsApp, an attacker can send one crafted
Intent so to pre-fill the content and the recipient of a message
to be sent: by hijacking just one click, such message will be sent
on behalf of the victim. This technique can be abused to leak the
victim’s telephone number by sending a message to an attacker-
controlled number; the attacker could also use this attack vector
to impersonate the victim to perform social engineering attacks or
spam-related activities.

Signal is vulnerable to this attack as well, but only if it is con-
figured to be the default app for handling SMS: in case it is not,
Signal does not allow the creation of a pre-filled message with
an arbitrary, attacker-controlled recipient, making the one-click
attack not possible. We note, however, that a clickjacking-based
attack against Signal is possible even in its default IM mode, but
it becomes more complicated. In particular, a malicious app could
ask the WRITE_CONTACT permission to add the attacker’s phone
number to the victim’s contact list multiple times, and it could use
a specially crafted name so to reach the top of the contact list (like
in a spraying attack): then, by hijacking two clicks—the first one to
select the attacker-controlled recipient (which is now on top) and
the second one to actually send the message—the attacker can once
again leak the victim’s telephone number. The attacker could then
clean up the contact list just after the attack is over.

Google Authenticator. Google Authenticator is also vulnerable
to clickjacking, but in a different way. For this app, there is no
sensitive button to be clicked, but it contains sensitive information,
such as two-factor authentication tokens. We have developed a
clickjacking-based technique through which the attacker can leak
this data. By luring the user to perform a “long click” action on
one of the tokens, the Google Auth app will copy this token to the
clipboard, which is freely accessible by any third-party app without
requesting any additional permission. We were able to quickly write
a prototype that, by just hijacking one click, obtains the relevant
token from the clipboard. To the best of our knowledge, this is first
known example of combining hijacking of long clicks and leaks

via clipboard. We note that this technique is generic, and that we
focused on Google Auth only as an explanatory example. In fact,
our tests show it is also possible, for example, to attack the Google
Drive app and lure the user to click on “share by link” for a given
item or folder, after which the item is shared and the link is copied
to the clipboard (and thus leaked to the attacker).

Facebook and Twitter. These apps are completely unprotected,
and it is thus easy for an attacker to “like” or share messages and
tweets, with techniques similar to what described above. For ex-
ample, it is possible to spawn the Twitter app to show a specific
tweet (URLs that contain twitter.com are treated in a special way
and delivered to the Twitter app), and it is thus trivial to perform
like-jacking or similar attacks.

Lookout Mobile Security. As a last representative example, we
investigated how the leading anti-virus app for mobile is resilient
to these attacks. To our surprise, we found that all widgets were
vulnerable to clickjacking: by hijacking three clicks, it is possible
to silently disable the security checks.

Discussion. The intent behind this section is to highlight the extent
and wide attack surface that even fully updated devices are subject
to. The practicality of these attacks varies depending on the number
of clicks to be hijacked. However, we note that the most complex
example above is attacking Signal, which requires four clicks, but
that previous work has shown through a user study that these
multi-step clickjacking attacks are very practical [10].

This is a list of interesting findings, but we would like to stress
that it is far from being complete. However, we find it worrisome
that, among the apps we have tested, we have not found a single
one that was protected by at least the obscured flag mechanism. On
the one hand, it is surprising that all these apps are still vulnerable,
especially since clickjacking for mobile has been known for several
years. On the other hand, we believe that this lack of protection is
not due to simple oversights, but it is due to fear of public outcry
caused by these backward compatibility concerns [27]. For example,
we have notified Google about the attacks against the Play Store in
August 2017, but, unfortunately, they are still practical.

5 HOW APPS USE THE USER INTERFACE

We have conducted a survey to determine how real-world apps
use the user interface. We have tailored our survey to study two
specific aspects: 1) how benign apps convey to the user the needed
contextual information concerning sensitive and security-relevant
actions; 2) how benign apps use the “draw on top” permission, and
which functionality they aim at implementing.

5.1 Conveying Contextual Information

We wanted to study how apps make use of the user interface to
convey relevant contextual information for a user to take informed
decision. Note that with the term contextual information we do not
only refer to security-related information displayed, for example,
in a popup: with it, we consider all information that the user needs
to be aware of to determine what the effect of one of her click on a
button would be (e.g., a click on the bottom-right part of the Gmail
app triggers a “send email” action).
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Figure 1: (a) An example of “widget” implemented as an on-
top overlay by Facebook Messenger. (b) Twilight app in ac-
tion, an example of screen filter. The red shade is imple-
mented as a persistent, on-top, semi-transparent overlay.

To this end, we have compiled a cumulative list of 67 sensitive
views used by different types of apps. This list includes views from
the Android settings app (and its sub-menus, 11 entries in total),
Google-owned apps (Gmail, Google Drive, etc., 11 views), and sev-
eral representative sensitive views belonging to banking apps (15),
social networks like Twitter and Facebook (8), messaging apps in-
cluding Telegram, Signal and WhatsApp (8), and security apps such
as mobile antivirus (14). In all cases, the relevant contextual infor-
mation is prominently shown in the center. We note that none of
the known and just-presented attacks discussed above would be
possible without covering the central part of the screen. Thus, we
conclude that, at least for the apps we have inspected, as long as
the central portion of the screen is not covered, clickjacking attacks
are not possible.

5.2 How and Why Apps Create Overlays

One of the concerns when developing a security mechanisms relates
to backward compatibility. As we aim to design a mechanism that
is not affected by these concerns, we have performed a survey
over a number of real-world apps to study how they use the “draw
on top” permission, and which purpose they want to achieve by
drawing overlays. We built three different datasets, which aim
at covering potentially problematic categories of apps (for what
concerns clickjacking protection mechanisms).

The first dataset is composed by popular apps hosted on the
official Google Play Store. This dataset is constituted by 454 apps,
and they all require the SYSTEM_ALERT _WINDOW permission.
This list was kindly provided by the authors of Cloak & Dagger [10],
and it was obtained by filtering for apps requiring the permission
from an initial dataset of 4,455 top apps on the Play Store crawled

across different categories. We have considered a subset of (ran-
domly selected) 305 apps for closer inspection. These apps span a
number of categories, including screen filters, messaging, audio &
video players, photo & video editing, custom launchers, VPN & net-
working, productivity & utilities (e.g., status indicators), antivirus,
and screen lockers.

The first dataset is already quite significant in size, but we wanted
to include in our analysis 1) apps from different sources and 2) apps
that could be particularly problematic for a defense mechanism.
To this end, we created a second dataset with apps taken from
the F-Droid open source apps repository [7]: we have randomly
selected the top 20 entries on Google when searching for the “an-
droid.permission.SYSTEM_ALERT WINDOW?” permission used in
webpages belonging to F-Droid apps. Among these, only 15 were
real apps (the remaining ones were toy samples) and they, once
again, belong to a number of different categories, such as messaging,
VPN & networking, productivity & utilities, audio & video players,
photo & video editing, and custom launchers. Moreover, we have
also created a third dataset constituted exclusively by screen filter
apps. We chose to focus on this category because their key func-
tionality is well-known to create backward compatibility issues
with current protections against clickjacking attacks [27]. In fact,
this category of apps relies on the creation of persistent fullscreen,
passthrough, on-top overlays: these overlays are all detected as
problematic by the obscured flag mechanism. For this dataset, we
have selected the 10 screen filter apps with the highest number of
installations from the Play Store. We report these apps in Table 1
in Appendix B.

We have selected for a throughout manual inspection a num-
ber of samples (between 3 and 5) for each of the categories that
were covered in the first dataset, and all the samples in the second
and third dataset, for a total of 60 samples. The remainder of this
section discusses the gathered insights, grouped by the different
functionality these apps aim at implementing.

Widgets at the margin. One very frequent use-case for the apps
in our dataset is to create overlays with the purpose of drawing
persistent widgets. Depending on the app category, these widgets
are used to display a number of information, to act as shortcuts, or
to attract attention from the user. Figure 1a shows a very popular
example, Facebook Messenger, which draws a rounded overlay to
notify the user of a new message. Other categories of apps that cre-
ate this kind of widgets are audio & video players (to show which
song is playing, see Figure 7a in Appendix C), VPN & networking
(to show the status of the connectivity, strength of the signal, and
similar information, Figure 7b), custom launchers (that draw side
widgets with shortcuts to various apps, Figure 9a and 9b), status in-
dicators (e.g., battery level, Figure 10a), and productivity apps (that
create shortcuts to documents, notes, and calendars, Figure 10b).
We note that, in all cases, these widgets are drawn opaque, click-
able, and they are place at the margin of the screen. This is expected,
as users would likely be annoyed by on-top opaque overlays in the
middle of the screen. We also note that these apps do not conflict
with the obscured flag defense. In fact, this defense kicks in only
when overlays cover the security-sensitive button itself. However,
the “hide overlays” defense could cause problems, because the users



would see these overlays flickering whenever the user clicks on a
security-sensitive button.

Screen filters. The main goal of these apps is to allow the user
to setup screen filters, so to change the “tone” of the screen color.
Many of these apps offer this feature to help users addressing sleep-
related problems. To quote the app description of Twilight [28], one
of the most popular apps of this category, “exposure to blue light
before sleep may distort the user’s natural (circadian) rhythm and
cause inability to fall asleep.” Thus, these apps change the color
of the screen to filter these blue-related components. Figure 1b
shows an example: as the reader can note, the screen’s color is
shifted towards a red component (this is a side effect of attempting
to remove the blue components).

Table 1 (in the Appendix) lists a number of these apps, together
with their number of installations. These apps appear to be very
popular: Even the most conservative estimation of the users of
these apps would conclude we are in the order of, at least, tens of
millions of users. We manually tested them all, and we confirmed
they all work by creating a persistent, semi-transparent, fullscreen
overlay on top of every other app.

Unfortunately, these apps break both the obscured flag and the
hide overlays defenses, making them inapplicable, if not in very
specific highly sensitive cases, such as the Settings app. In fact,
when using them, the user cannot click on any security-sensitive
button when these overlays are up.

Show important notifications. We have found apps belonging
to the antivirus category that create overlays to show “urgent”
notifications, e.g., a malware was identified. These overlays are
created as opaque and clickable (and usually show some kind of
information), and they are thus created in the central part of the
screen.

Photo & video editing. We have found one sample that embeds
a camera view (the app requires the “camera” permission), on top
of which a few overlays are superimposed. The main purpose of
these overlays is to implement menu shortcuts and display current
information such as GPS position. We note that these overlays are
only drawn when the app is open—they disappear as soon as the
app is closed.

Content preview. One of the samples belonging to the audio &
video category (from the F-Droid dataset) creates an opaque, click-
able overlay in the center of the screen with the main goal of
showing a preview of the video that is about to be played.

Screen lockers. Apps belonging to the screen lockers category
create overlays with the only intent of blocking the screen. Thus,
these overlays are created fullscreen, opaque, and, of course, click-
able. Once the lock screen is de-activated, the overlay disappears.
Note that starting from Android 7.0, these apps are not useful any-
more: a user can easily access the notification bar and disable these
overlays, thus making screen lockers easily bypassable.

Discussion. Among the various “benign” use cases that we have
mentioned above, some of them may potentially interfere with a
clickjacking defense. In particular, we refer to all those cases that,
by design, rely on somehow persistent overlays, i.e., overlays that
do not appear as a one-off notification, but they are specifically
designed to remain on the screen for an extended amount of time.

The main two classes are screen filters and apps that display persis-
tent widgets: these are very popular (100+ million users), and they
thus require to be taken in consideration.

However, the remaining use cases, such as apps that show no-
tifications, photo & video editing apps, or screen lockers are not
problematic: the overlays they create are either not persistent, or
they are created only when the user is interacting with the app
generating them (e.g., photo & video editing). In other words, in a
benign scenario where the user interacts with a sensitive app, these
overlays would not be displayed in the first place.

6 DESIGNING A DEFENSE MECHANISM

The design space for an effective mechanism to protect from click-
jacking is large. To make it worse, as we will see, there are a number
of solutions that seem to work [13, 29], but then turn out to not
cover all malicious cases, or introduce significant backward com-
patibility issues (e.g., hide overlays). To this end, we opted for a
systematic exploration of the design space and we draw a number
of observations that, independently from a given proposed solution,
we believe must all be taken into account when designing a system
that is both effective and practical.

6.1 Prerequisites for Clickjacking

We aim at designing our solution to target the fundamental proper-
ties of clickjacking. Here we briefly systematize the two prerequi-
sites that every variant of clickjacking attack needs to satisfy.

P1: A click needs to reach the vulnerable app. By the very
definition of clickjacking, the attacker needs to lure the user into
clicking on a widget owned by a vulnerable, security-sensitive app.
In other words, no clickjacking attack can be successful if the click
does not land on the target app.

P2: Confusing the user is necessary, by definition. In order
to lure the user into clicking the target button, the attacker must
hide or tamper with the current contextual information, even if
in part. In fact, if the context were fully available, the user would
have all the needed information to notice the (negative) impact that
her click may have, and she would never knowingly perform such
action. Note that when we talk about hiding the context, we do
not necessarily refer to malicious apps that fully (or prominently)
cover the main portion of the screen; instead, we also refer to more
subtle cases where few pixels on the screen are changed so that,
for example, a purchase price is slightly altered.

6.2 Exploring the Design Space

In this section we systematically explore the design space of possible
defense mechanisms. We organize the discussion by focusing on
six complementary aspects.

6.2.1 Overlay location

0O1: Overlays at the margin are not problematic. As discussed
in Section 5.1, we have studied how apps convey contextual in-
formation to their users, and, we found that, in all cases we have
analyzed, such information is prominently displayed in the central
part of the screen. Thus, one key observation is that while it is
important to make sure that the central part of the screen remains
visible to the user, overlays displayed at the margin of the screen



Figure 2: This figure shows how multiple overlapping semi-
transparent overlays are rendered as opaque. It has been ob-
tained by overlapping one, two, three, and four identical and
semi-transparent overlays.

can be considered as not problematic. In fact, none of all the at-
tacks discussed in the previous section would be possible if the
central part of the screen would not be completely covered. Simi-
larly, we have not identified any single practical scenario where an
attacker could perform clickjacking attack by just using a Facebook
Messenger-like widget on the margin of the screen.

02: Overlays covering the center of the screen must be al-
lowed. Yet, as discussed in Section 5.2, several popular apps re-
quire to implement for their main (often single) functionality the
creation of persistent, on-top overlays. This is the case, for example,
of screen filter apps. Thus, to avoid backward compatibility issues,
a practical defense mechanism needs to allow this to happen.

6.2.2 Clickable vs. passthrough

03: Both clickable and passthrough overlays could be used
to mount attacks. Traditional clickjacking attacks require the
usage of passthrough overlays, so that the click of the user would
reach the victim app beneath the on-top overlay. One would thus
be tempted to consider the usage of passthrough overlays as a
necessary condition for clickjacking, and thus use this as a detection
“feature” However, the context-hiding attack can be performed with
either clickable or passthrough overlays. In fact, in this scenario, it is
even more practical to use clickable overlays, so that the attacker
can catch all clicks that do not land exactly where the attacker wants.
Unfortunately, this is an assumption used in a recent proposal by
Wau et al. [29], which can thus be bypassed.

6.2.3 Opaqueness vs. transparency

04: Both opaque and transparent overlays could be used to
mount attacks. Similarly to the point above, one may be tempted
to treat opaque overlays as (possibly) malicious, but to consider
semi-transparent overlays as benign. This is another assumption
used by Wu et al. [29], and we think it offers another venue for
bypass. In fact, we wrote a proof-of-concept that shows how a

malicious app could easily create a number of overlapping semi-
transparent overlays that, when rendered all together, behave as an
opaque overlay (due to how the rendering procedure works). We
show this effect in Figure 2, where it is possible to see how the main
part of the screen is completely covered, even if all the overlays
used in this example are in fact semi-transparent. Thus, one should
refrain from considering overlays independently: what matters is
the net effect of all these overlays.

6.2.4 Content analysis

05: Machine learning techniques should be avoided. A num-
ber of works have shown how even the most advanced machine
learning techniques are vulnerable to sophisticated adversarial at-
tacks, especially for algorithm working in the image domain [5, 18].
Thus, we believe that it is preferable to avoid defense solutions
based on machine learning (to perform image similarity tests, for
example), especially since, in this scenario, a malicious third-party
app would have full control over the pixels displayed to the user. We
thus exclude techniques that rely on Al-based image recognition,
such as image similarity analysis or Optical Character Recognition
(OCR) techniques.

06: Apps can collude. One option to detect malicious overlays is
to detect the overlays generated by a given app, and analyze them
for malicious signs. However, it is possible for malicious apps to
collude and create overlays that are benign when considered separately,
but malicious when rendered together. Once again, we believe it is
important to focus on the net result of all displayed overlays.

6.2.5  When should the defense come into play?

0O7: Detection only at clicks on sensitive widgets. A necessary
prerequisite for a clickjacking attack is that the user clicks on a
security-sensitive button (P1). This implies that as long as no click
reaches such sensitive widgets, no attack can happen. Thus, it is
possible to run the detection algorithm only in these cases, without
the risk of having attacks going unnoticed.

6.2.6 How to implement such defense mechanism?

08: Limited information should be exposed. The defense mech-
anism should not expose, directly or indirectly, sensitive informa-
tion to third-party apps. Third-party apps should be able to de-
termine whether the user clicks on their button while being fully
aware of the action she is authorizing. However, they should not
be able to infer information such as “which overlay has the user
clicked on,” or “which app was covering it” Otherwise, a malicious
app could use this security mechanism as a side-channel to infer
what the user is typing (see keystroke recording via obscured flag
in [10]), and which and when a user opened a given app (such
as a banking app), thus facilitating the practical development of
phishing attacks [4, 6, 20].

09: No special permission should be granted to third-party
apps. The defense mechanism should not allow third-party apps
to affect the user experience of other applications. This is the rea-
son why we believe that the “hide overlays” defense mechanism
implemented by Google is not a good candidate to be granted to
third-party apps as well—it would be a too powerful mechanism,
and likely to be abused.



010: Framework modifications are required. There are a num-
ber of proposals, as we will discuss in Section 10, that attempt to
prevent clickjacking and similar attacks by providing a user-level
library, without requiring framework modifications. We argue that
framework modifications are necessary if we were to determine
not only that an overlay is on top of a security-sensitive button
(this is information is exposed via the obscured flag mechanism),
but also to determine whether the contextual information is obscured
as well. Having access to this last information is critical to fully
prevent clickjacking, but it is currently not exposed by the Android
framework. We thus believe that any proposal that does not require
modifications to the framework (or privileged access) cannot fully
eradicate this threat.

7 CLICKSHIELD

This section describes the defense mechanism we have designed for
this work. The proposed system, called CLICKSHIELD, is envisioned
as a modification to the Android framework. Its design is built upon
the observations discussed in the previous section. In this section
we will refer to these observations with the On notation, where n
identifies which observation we are referring to.

7.1 Overview

The vision. Our system’s main goal is to implement a principled
defense for clickjacking attacks. To lower the barrier for adoption,
the integration scenario we envision for this work is the same as the
currently existing obscured flag defense mechanism: the developer
indicates to the Android framework that a given Button widget is
associated with security-sensitive operations, and thus needs to be
protected. We refer to these buttons as sensitive buttons. One of the
necessary condition for any clickjacking attack is that a click needs
to reach a sensitive button. Thus, the defense mechanism presented
below enters in action only when a click on a sensitive button is
detected (see prerequisite P1).

Security assessment. Once a click is detected, the system checks
for the presence of overlays. If no overlays are detected, then no
attack can happen, and the system quits the analysis. If at least one
overlay is detected, the system checks where this overlay is located.
We know that the relevant security context is shown to the user in
the middle of the screen (see Section 5.1), and overlays located at
the margins of the screen can then be treated as innocuous (O1).
For example, overlays generated by Facebook Messenger (see Fig-
ure 1a) fall in this category, and they thus do not raise unnecessary
warnings. However, of course, overlays could also be displayed in
the middle part of the screen. On the one hand, these overlays could
attempt to alter/hide the current context; on the other hand, it is
not practical to disallow such overlays, as it would generate too
many redundant warnings (02).

The key idea. While the implementation of simple checks such
as presence and location of overlays is trivial, the key technical
challenge we focus in this work is to determine whether the over-
lay(s) covering the center of the screen are attempting or have the
potential to deceive the user. One would be tempted to analyze each
of these overlays separately, and determine whether they are semi-
transparent and uniform. However, as noted above, it would be
easy to bypass this technique (O4 and O6). Our idea is to focus
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Figure 3: Representation of the Alpha Blending mechanism.

on analyzing and comparing what the user sees against what the
user would have seen if no overlay were rendered. This idea has the
advantage of abstracting away how the final rendered image that
the user sees is generated: it is in fact independent from whether
the overlays are clickable or passthrough (O3), whether they are
opaque or transparent (O4), and it is independent by their num-
ber and from which app or apps have generated them (06). This
idea is implemented in a new image analysis technique we called
deblending, described in details later in this section.

Protection. The output of the above analysis steps can have two
outcomes: either the system returns “benign” or it returns “suspi-
cious.” In the first case, no step is taken and everything proceeds as
expected—the user will not even realize that a security check was
ever performed. If the outcome is “suspicious,” however, the system
takes additional steps to ensure that the user is knowingly clicking
on the sensitive button. To this end, the click is not delivered to
the target app, all overlays are temporarily hidden, a warning is
displayed, and the user is asked to click again, if that was intended.
Additionally, one could envision a system that allows a user to
report the offending app, in case this was a true positive. We also
note that, in our deployment scenario, our system would be imple-
mented directly within the Android framework itself, and not in the
third-party app. This is in stark contrast with the implementation of
the obscured flag mechanism, in which the developer of the benign
app needs to write the error handler, thus creating possibility of
bugs and increasing the friction for adoption.

7.2 Deblending

We now discuss the core technical part of our work, the deblend-
ing analysis step. Before we do that, we will cover the technical
background needed to understand the details.

7.2.1  Alpha Blending

Android apps can create overlays that will be displayed “on top” of
the current application. Each overlay can be arbitrarily controlled
by the generating app. For each of its pixels, the app can set the
Red, Green, and Blue components, as well as the Alpha component,
which defines the “transparency level” of the pixel. Thus, each pixel
is defined by a quadruple of 8-bit numbers, RGBA. These overlays
can be fully opaque (like Facebook Messenger overlay in Figure 1a),



or semi-transparent (like Twilight app, shown in Figure 1b). Apps
like Twilight achieve this by specifying, for each pixel, an alpha
value lower than the maximum (i.e., 255).

Overlays are rendered together by an Android framework com-
ponent called SurfaceFlinger, which implements a technique
known as “Alpha Blending” Alpha blending defines how the differ-
ent overlays are “mixed up” according to their RGB components
and their alpha values. Consider Figure 3. The application the user
is interacting with is represented by DST, while the overlay (one
or more) is represented by SRC. Given the pixels for DST and SRC,
alpha blending determines, according to a formula, what the user
will see on the screen, represented by OUT. For example, this is how
the red component of OUT’s pixel at position (x, y) is computed:

OUTId = round(SRCL + o+ DSTL + (1 - ),

where DST and SRC (integer values between 0 and 255) indicate
the red components of DST’s and SRC’s pixels at position (x, y),
indicates the alpha value of SRC’s pixel at position (x, y), and round
indicates the rounding to nearest integer operation. Note that in
this formula, « is a float value ranging from zero to one. If & = 1,
SRC is fully opaque: as expected, OUT = SRC; if @ = 0, SRC is fully
transparent, thus OUT = DST.

7.2.2  The Key Idea

In our scenario, DST represents the target app, SRC is what is drawn
on top of it, and OUT is what the user actually sees. In Figure 3,
SRC is shown as a single overlay. However, we note that SRC can
be interpreted as the “sum” of all drawn overlays, rendered against
DST, which then generate the final image OUT. In other words, SRC
represents the “delta” between what the target application expects
the user would see assuming no overlays are displayed (DST) and what
the user actually sees (OUT). We note that this abstraction captures
all cases where one or more overlays are displayed, regardless of
how these overlays are created (clickable or passthrough, opaque
or semi-transparent), and regardless of which and how many apps
are creating them. Thus, this captures complex scenarios such as,
for example, a malicious app taking advantage of overlays created
by benign apps, or multiple colluding malicious apps.

Within the context of this setup, the key idea is to first extract
DST and OUT, and to use them to compute a candidate for SRC
(note that, in fact, SRC is not directly available to the system with-
out additional rendering operations, which would constitute an
invasive change and incur in performance overhead). We then
analyze SRC to determine whether the overall impact of all the
overlays that cover DST can be deemed as benign or suspicious.
We consider the computed SRC as benign if and only if it is, in
fact, a semi-transparent and uniform overlay. The uniformity con-
straint implies that DST has been altered in a “uniform” way and
no parts of the screen are modified differently than others; while
the semi-transparency constraint implies that DST is indeed still
visible. We note that this “uniformity” property is intentionally a
global property. Take the benign example of Twilight: its overlay is
modifying each and every pixel on the screen, but it does so in an
uniform way, and it is thus considered as a benign case. The rest of
this section discusses these steps in detail.

7.2.3  Extraction of DST and OUT

To compute SRC, we first need to extract DST and OUT. DST is
how the user would see the target app without any overlay. In
other words, it represents the “pure” version of what the target app
expects the user to see. OUT, instead, is what the user actually sees.
To extract these images, we have modified the Android framework’s
SurfaceFlinger component. Our modification exposes a new API
that allows us to extract both DST and OUT. In particular, OUT is
simply what is displayed to the user; instead, DST is obtained by
filtering out all the layers that are not generated by the target app
(the one that received the click). Since the rendering is performed
by processing layers from the lowest to the highest (for obvious
reasons), DST can be easily obtained by dumping the current state
before overlays above it are processed. The same argument holds
for OUT: the renderer would have needed to compute it regardless
of our defense system. Thus, from the conceptual point of view,
no extra rendering steps are needs for this task. The subsequent
analysis steps rely on having access to the raw values of pixels for
DST and OUT.

7.2.4  Computation of SRC

Assuming we have access to the raw data for DST and OUT, the
goal is now to compute SRC. We want to find SRC such that OUT
can be “explained” starting from DST. One may be tempted to
calculate SRC pixel by pixel. However, this is not possible. Recall
that within the context of the alpha blending formula, DST and
OUT are known, but SRC is not. Thus, given the RGB values of DST
and OUT for a single pixel, we have four variables (SRC’s values
of RGBA quadruple), but only three equations (one for each RGB
component of OUT): the system of equations is underdetermined.

Assuming uniformity. To tackle this problem, we start by assum-
ing that SRC is a uniform overlay. Under this assumption, any two
pixels in SRC will have the same RGBA values. As we will discuss
later in this section, this assumption makes it possible to compute
a candidate value for a starting from few pairs of pixels of DST
and OUT; we can then use this candidate value for @ to compute a
candidate value for each pixel of SRC. Once we have computed SRC,
we can then verify whether our initial assumption was correct: is
the resulting SRC a semi-transparent uniform overlay? If the an-
swer is affirmative, we know that OUT was computed from DST by
applying a uniform “delta,” and we consider this scenario as benign.
If the resulting SRC is not uniform, there are two possible scenarios.
In the first scenario, the “real” SRC was in fact uniform, but our
candidate for & was wrong: in this case we raise an unnecessary
warning. In the second scenario, the “real” SRC was not uniform.
In this case, our procedure does not guarantee us to recover the
“real” values for SRC. However, for our analysis, this is acceptable:
if we have determined that SRC is not uniform, we can already flag
the overlay as suspicious, without needing to know the real values

of SRC.

a and SRC computation. Even under the assumption that SRC is
a uniform overlay, it is still not possible to calculate RGBA values
starting from one pixel only. However, it is possible to do so when
considering pairs of pixels. Consider a pair of pixels for DST and
OUT (two of each). We can write two equations for each of its
RGB component (thus six in total), and we have 4 variables (SRC’s



RGBA values). For example, if we consider the red component, the
equations are:

OUT!*? = round(SRC*4  a + DST/®? x (1 - a))
OUT}*? = round(SRC™*? « & + DST]* * (1~ a))

Under the assumption of a uniform SRC, we can compute a
candidate value for a:
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We note that due to rounding errors, the computed value is
not precise. It is however possible to calculate a bound (all the

calculation steps are reported in Appendix A), which results to be:
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That is, the smaller the difference of values for two of DST pixels,
the greater the error is. To address these errors, in practice, we
select multiple pairs of pixels, so that the bound is refined until a
pre-defined precision is met (5/255 in our implementation). Once a
candidate value for « is computed, we can then use it to calculate
values for all pixels of SRC (by using the standard alpha blending
equations: now we have three variables and three equations).

a and SRC analysis. At this point, we have a candidate value for
a and the RGB values for SRC. Again, the value of a (and thus
the values for SRC) are obtained under the assumption that SRC
is indeed uniform. Now we have what is necessary to verify our
assumption and whether SRC is a benign overlay. First, we verify
that the value of « is lower than a certain threshold (0.94 in our
implementation) to ensure it is indeed non-opaque. SRC is then
analyzed for uniformity. To this end, we calculate a uniformity
score y that captures the range of different colors that are present
in SRC, defined as

color calor)

Y= Z ( max - min _p
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In words, we consider the sum of differences between the max and
min values for the red, green, and blue color components. This
score is very low for uniform overlays, while it is much higher
for non-uniform ones. Note that we opted for this simple metric
instead of more complex ones like variance deviations because
these latter ones change depending on the size of the image, and it
is easier for an attacker to “hide” their pixel modifications within
a low variance. For our experiments, the threshold we selected
to discriminate between benign and suspicious cases is 100. This
threshold was selected empirically: we refer the reader to Section 8.2
and Figure 4 for a discussion.

The full algorithm. To ease our explanation, we have omitted a
number of additional aspects and optimizations, which we now
describe. When we compute the candidate value for «, there are
some corner cases that offer the possibility for optimization or
simpler procedures. If & = 1 (or, more in general, a value higher than
our threshold), we flag SRC as suspicious, without even computing
it: in fact, no matter what the values are, we would not have a
semi-transparent overlay, which we do not want to allow. If & = 0,
then it means that the two DST and OUT pixels are the same, which
implies that SRC would be a fully transparent overlay. In this case,

instead of explicitly computing SRC, we perform a pixel-by-pixel
comparison between DST and OUT to determine whether SRC is
in fact fully transparent. If not, we flag the overlay as suspicious.
This allows us to detect pixel-level modifications, such as a subtle
change of price of an app. It is also possible that, while considering
multiple pairs of pixels, we would encounter a situation where
incompatible candidates for & are extracted. This implies that the
SRC is not uniform (because « is not always the same) and we thus
flag the overlay as suspicious. We also note that since we focus on
the “central” part of the screen, these image analysis steps process a
cropped version of DST and OUT. (In our current implementation,
starting from a 720 X 1280 image, we discard 120 pixels from the left
and right margins, and 200 from the top and bottom. We empirically
selected these parameters taking into account the insights discussed
in Section 5.)

The last corner case relates to the fact that a good candidate for
a can be determined only when two pixels of DST are different
enough. If DST is particularly uniform, it could be difficult to find
those pixels randomly. For this reason, if after a number of attempts
(100, in our implementation) we cannot find pixels that are suitable,
our analysis does a full scan of DST to find such pixels. Unless DST
is a particularly uniform image where all pixels are the very similar
(a scenario that does not happen in practice for any useful app), we
raise a warning. We note that pixel-picking may generate unneeded
warnings in the worst case, but there is no risk of having attacks
going unnoticed.

Performance considerations. We envision this system to be used
only when a number of necessary conditions for clickjacking at-
tacks are satisfied: the user clicked on a sensitive button and the
central part of the screen is covered by one or more overlays. This is
a rare condition in practice that only users of screen filters apps or
users under attack would encounter. Nonetheless, the performance
impact is negligible (see Section 8.2). In the worst case, the analysis
needs to do two scans of the images: the first one to compute a
candidate value for « (in the corner case mentioned above), the
second one to compute and analyze SRC (these two steps can be
done in-line). We notice that the first condition is so rare in practice
that it was never triggered in our test cases, even in the simulated
ones that are mostly uniform screens. Thus, in a real-world sce-
nario, where apps do rarely display completely uniform screens,
the expected worst-case is to perform one full pass on the images.
The best case is to compute a value of « that does not require the
computation of SRC to make a determination (e.g., « = 1). Finally,
we note that the performance of this analysis pass does not depend
on the number or typology of overlays in the system, as we work
at the image level.

7.3 Implementation and Other Aspects

We have implemented the core deblending algorithm in Python (for
experimenting with the different thresholds and accuracy tests),
and in C (for the performance tests on a real mobile device). As
we will discuss in the Section 8.2, even if our implementation is
single-threaded, the performance impact is negligible (especially
when considering that this algorithm enters into play only when
specific conditions are met, i.e., the user clicked on a sensitive
button and the central part of the screen is covered by one or more



overlays). We would like to stress that this is just a prototype, and
that actual implementation of this system could take advantage
of the device’s GPUs, making this analysis step even faster and
less invasive. We have also implemented a modification to the
Android framework to expose a new API that allows the system to
extract both DST and OUT. This is implemented by modifying the
framework with a special branch so that, if certain conditions apply,
only layers associated to a given app (identified by its package name)
are passed to the renderer, so that DST can be properly computed.
Again, what we have implemented is a research prototype—an
actual implementation of this system would simply store the partial
results of the rendering in optimized data structures and make use
of the GPU.

Another important aspect is handling race conditions: from the
conceptual point of view, an attacker could deceive the user and hide
the malicious overlays just before the user’s click. This is a known
problem that has been addressed in previous works [10, 21, 22]: ifa
sudden change is detected upon a click on a sensitive button, then
the situation should be treated as suspicious no matter how the
overlays look like.

8 EVALUATION

This section describes CLICKBENCH, a benchmark tailored to specif-
ically evaluate clickjacking solutions, and then discusses the accu-
racy, robustness, and performance of our prototype.

8.1 ClickBench

In an attempt to make this research area more systematic, we built
the first comprehensive benchmark, called CLICKBENCH, to evaluate
clickjacking approaches. It is in fact easy to miss protection against
specific corner cases, or to develop secure proposal that would
interfere with existing apps [10, 17, 29]. Our dataset includes a
total of 104 test cases. Each test case is constituted by pairs of
images: the “pure” view of a target app that needs to be protected
from clickjacking (i.e., DST), and what the user actually sees on the
screen (i.e., OUT). The test cases were selected with the specific
intent of representing the various scenarios we have encountered
throughout our study. Among these 104 test cases, 47 represent
benign use cases, while 57 represent malicious scenarios. We will
release CLICKBENCH to the community.

Benign samples. This set is constituted by 47 samples, and it aims
at representing real-world benign use cases that rely, in one way
or another, on the creation of persistent overlays (i.e., overlays that
are not briefly shown just for the sake of a quick notification: these
scenarios, in fact, would not create backward compatibility issues).
30 of them are obtained by running 10 real-world screen filter apps
(like the ones listed in Table 1) each of which with three differ-
ent settings (e.g., the tonality of the filter, the darkness, and the
transparency). In all these cases, the overlays are drawn fullscreen,
semi-transparent, and passthrough. We chose the remaining 17 sam-
ples with the intent of covering all the various scenarios described
in Section 5.2: 10 create floating widgets (1 VPN & networking app,
1 productivity app, 2 audio and video players, 1 audio and video
editor, 2 apps from status notification category, 2 custom launcher
and 1 communication app); the last 7 test cases were built by using
a combination of screenfilter applications and floating widgets.

Malicious samples. This set is constituted by 57 test cases. 10
of these samples aim at representing all known techniques and
attack scenarios described in the literature [2, 10, 17, 24, 26, 29—
31]. Some of these works and posts are overlapping, but we made
sure to cover the two known classes of clickjacking techniques:
traditional “clickjacking” and “context-hiding” attacks. To the best
of our knowledge, all known attack scenarios are properly rep-
resented in CLICKBENCH. The remaining 47 samples have been
specifically developed to stress-test our own proposal by simulat-
ing different scenarios of the aforementioned attacks. For example,
one of these examples aims at simulating a subtle attack that only
modifies few pixels on the screen to change a price displayed on
the Play Store (see Figure 5a and 5b). We also had a chance to
externally validate our work with a never-seen-before real-world
malware: While writing this paper, MWR labs published a blog post
where they documented how they could mount a context-hiding
attack (and perform clickjacking) against the Android SystemUI
pop-up used to display the RSA authentication prompt when an
adb server attempts to connect [15]. We took this opportunity to
test CLICKSHIELD against this test case, which we were not aware
of before finalizing the approach and the various thresholds, and
we added this sample to CLICKBENCH.

8.2 Evaluation

We now describe the accuracy results when running our system
against CLICKBENCH.

Accuracy. When run against our benchmark dataset, our system
was able to detect all malicious cases as possible attacks (including
the sample we had never seen), and it flagged all benign test cases as
not problematic, except one. The benign test case that is flagged as
potentially problematic is an app belonging to the F-Droid dataset
(see Section 5.2), and it creates an opaque widget in the middle of
the screen to preview a video. Figure ?? in the Appendix shows this
app in action.

Although this is a benign scenario, we believe our prototype
“correctly” flags it as potentially problematic: this overlay is in fact
covering an important portion of the screen and there is a chance
that the user may be deceived—this is exactly what an attacker
could do. We note that, in a real-world deployment, this scenario
generates an unnecessary warning only when the user is watch-
ing the preview and, at the same time, she is interacting with a
security-sensitive app: if such condition is verified, CLICKSHIELD
would then automatically make the overlay disappear and would
ask the user to click again. Since we have not found similar sam-
ples in popular apps on the Play Store (this sample belongs to the
15 of the F-Droid dataset), since a false warning would be raised
only in very narrow circumstances and do not cause significant Ul
interference, and since there is an actual risk that the user could be
deceived (few pixels modification are enough), we believe this is an
acceptable trade-off. We reiterate that all the popular screen filters,
apps creating widgets, and the combination thereof were correctly
classified as not problematic.

Robustness. For 47 of these cases, the candidate « is computed to
be zero, and thus our system performs a pixel-by-pixel comparison.
For 44 of these cases, CLICKSHIELD detected opaque overlays in the
central area of the screen, and thus flagged them as malicious. In all
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Figure 4: This plot shows the distribution of the uniformity
score across our benchmark dataset. The plot highlights
how there is a clear cut between the benign and the mali-
cious test cases. 100 is the score threshold we used in our
prototype. We note that this plot only concerns the 42 test
cases for which the uniformity score needed to be computed.

benign cases, CLICKSHIELD was able to reconstruct the correct SRC.
For these 44 cases, CLICKSHIELD needed to sample an average of 6.13
pairs of pixels to compute a good estimation for @ (minimum of 1
and maximum of 62, which was needed for the most complex of our
simulated malicious examples). The full SRC analysis is triggered in
42 of these test cases (in 2 of the 44 cases, @ was above the maximum
opaqueness threshold, and SRC was not needed). Finally, Figure 4
shows the distribution of the uniformity scores y obtained for these
test cases. The figure shows how the benign and malicious test
cases are clearly separated. This implies that our system is not very
sensitive to the specific threshold we are using.

We note that some test cases have been developed specifically
to break our own defense. For example, one of them consists of a
semi-transparent overlay with a few pixels modified so that, when
overlapped with the Play Store, the price of an app would change
from 2.99 to 1.99. The semi-transparent overlay is used to cause our
system to detect a # 0, and it thus triggers the SRC computation
(which is the part of our work that is the most prone to noise and
errors). The figures for these particular test cases are reported in
Figure 5 and 6 in Appendix C. As the reader can see, the computed
SRC is mostly uniform, but it does contain a few anomalous pix-
els, which are enough for our system to detect this scenario as
suspicious.

Performance. We now discuss a performance evaluation for what
concerns the major bottleneck of our approach, the deblender analy-
sis. For this analysis, as we have mentioned, the worst-case scenario
that one would encounter in practice is the need for a full scan of
DST and OUT to compute and analyze SRC. We have run a number
of experiments on a Google Nexus 5X, running the latest version of
Android (8.0). We have written our analysis as a native code com-
ponent. This component takes as input DST and OUT images, and
it computes and analyze SRC, returning “benign” or “suspicious”

as an outcome. We have performed this experiment 100 times and
we have timed the computation and analysis of SRC. The mean
of the execution time is of 12.73 ms (o = 0.000456). We believe
this overhead to be negligible, especially since this analysis step
is performed only when specific conditions are met (i.e., the user
clicked on a sensitive button and the central part of the screen is
covered by one or more overlays). Moreover, we stress that for a
real-world deployment of this system, one should take advantage
of the GPU and other hardware optimizations. We believe the value
of our work consists in showing that an efficient analysis technique
to protect against clickjacking exists and that, according to our
evaluation, it is effective.

9 THREATS TO VALIDITY

As for every protection mechanism, there is always the possibil-
ity that, when deployed in the real-world, there could be either
backward compatibility issues or the possibility for evasion. This
section discusses these risks and our efforts to minimize them.

Backward compatibility concerns. CLICKSHIELD raises warn-
ings only when the central portion of the screen is covered by
a non-uniform overlay and the user attempts to interact with a
security-sensitive widget. Our survey (Section 5.2) appears to vali-
date our assumption that these situations are very rare in benign
scenarios. The risk of concrete usability issues is also mitigated by
the fact that, if a warning occurs, CLICKSHIELD would simply re-
move the covering overlays and ask for an additional confirmation.
One other concern is that our survey may not be representative.
We addressed this concern by considering samples from different
sources, including top apps on the Play Store and apps that we
knew to be specifically problematic for clickjacking protections.

Evasion possibilities. One inherent assumption of our mecha-
nism is that a successful attack needs to cover the central part of the
screen. Once again, we relied on a survey (discussed in Section 5.1)
to validate our hypothesis: in all cases the needed contextual infor-
mation is prominently shown in the central part of the screen, and,
at least for the 67 views covered by our survey, we are not aware
of any technique to bypass our defense (which certainly already
breaks all the known and new attacks presented in this paper).

One other concern is that our system shares one limitation with
existing solutions (e.g., obscured flag): the developer needs to in-
dicate which parts of the app are sensitive. We acknowledge that
an ideal system would automatically address this aspect. However,
this problem has been addressed in previous research [21], which
could be used in conjunction with our system. That being said, our
understanding is that many sensitive apps are left unprotected not
due to an oversight, but due to the lack of a practical solution—the
core problem that this work attempts to solve.

10 RELATED WORK
10.1 Offensive Research in Android Ul

One research area in terms of attacks of Android Ul relate to mobile
phishing. A well-known form of UI attack on Android is phishing,
also known as “task hijacking.” For example, Rydstedt [23] demon-
strated that mobile browsers are vulnerable to framing attacks,
while several other works have shown how to lure users to enter



their credentials into malicious, spoofed Uls [4, 6, 8, 20]. The other
class of UI attacks is clickjacking, the focus of this work. We have
already mentioned several works on the topic from the research
community [2, 10, 17, 29], and these techniques are finding their
ways in real-world malware as well [24, 26, 30, 31].

10.2 Defenses against UI Attacks

A number of works have focus on defending from Android UI
threats. The first group of works aims at defending from clickjacking
attacks. One of the first defense proposal is by Niemietz et al. [17],
which propose to add a security layer between overlays, so that no
user input can pass across apps. While this would prevent clickjack-
ing attacks, it would cause backward compatibility problems with
existing apps (see Section 5.2). Another work in the area is [29],
which proposes to detect malicious overlays considering a number
of features: in their work, the authors consider as benign overlays
that are either 1) semi-transparent or 2) clickable by breaking obser-
vation #3 and #4. As we have shown, these can be bypassed. Another
recent proposal is [21], but it is bypassable via context-hiding at-
tack [10]. Other works attempt to prevent Ul attacks by detecting
the presence of any overlay potentially obscuring the protected UI
by providing the developer with a third-party library using obscure
flag [25] or ally [11]. The defense mechanism proposed in [10] is
similar to “hide overlays” implemented by Google, and it shares the
same backward compatibility concerns. Another defense proposal
is [19], which proposed the Android Window Integrity policy: it
makes sure the current visible window is not obscured by windows
from another app. However, like the “hide overlay” mechanism it
does not address the challenge of handling the many legitimate
overlay use cases (see Section 5.2) and have to resort to whitelist-
ing all legitimate apps that employ overlay windows, which is not
scalable and might introduce security concerns. In fact, a malware
could first display benign overlays, be added to the whitelist, and
then perform unconstrained UI attacks. Our system instead, com-
pared to [19, 21, 29], is different in multiple aspects: it does not rely
on a whitelist approach and it is completely transparent to the user.
Moreover, it evaluates the maliciousness of a given set of overlays
at run-time, making the evasion techniques mentioned above, to
the best of our knowledge, ineffective.

There are a number of other works that aim at defending from
other classes of UI attacks. For example, [4, 9, 14, 19] aim at pre-
venting phishing attacks on Android. Unfortunately, these works
are ineffective against clickjacking attacks. It is important to de-
note how phishing is significantly different than clickjacking: in a
phishing attack, the malicious application tries to lure the victim
into inserting sensitive information like username and password
by mimicking the legitimate application interface and behavior,
while in clickjacking the user is lured to unknowingly interact with
the (benign) target application beneath a malicious overlay. Finally,
other works addressed the problem of automatically identifying
usage of user sensitive input (e.g., user credentials) to automatically
mark as “sensitive” and protect them [3, 12, 16]. These works do
not tackle the problem of clickjacking, but they are very promising
and complementary to our work.

11 CONCLUSIONS

In this work we have shown that clickjacking on mobile is still an
open problem and that many first- and third-party apps are still
affected, even if this class of attacks has been known for several
years. After surveying how apps use overlays and explore the de-
sign space, we have proposed a new protection mechanism, CLICK-
SHIELD, based on image analysis technique, and we have showed its
effectiveness by evaluating it against CLICKBENCH. Unfortunately,
even if we are disclosing the vulnerabilities we have discussed in
this paper, it is unclear how the affected apps can prevent these
attacks without additional support from the Android framework.
We hope that Google will consider and implement our proposal,
which we believe would allow apps to defense themselves from
the threat of clickjacking, without risking public outcry due to
backward compatibility issues.
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APPENDIX
A BOUND CALCULATION

Here we present the steps to calculate the bound for . We assume
that SRC is a uniform overlay. Thus, SRC’s RGB and « are assumed
to be constant. Under this assumption, we want to compute a can-
didate value for a. Let’s consider one random pair of pixels, (p1, p2).
Each of these pixel has three components, RGB. For each color
component, we can write a pair of equations. These equations are
directly derived from the alpha blending formulas:

OUTlred = round(SRC"¢% x o + DSTlred x*(1—a))
OUT}®? = round(SRC*? « o + DST}? x (1 — a))

where OUTl.red and DSTl.red indicate the red component of i-th
pixel of OUT and DST, SRC" ¢d and « indicate the red and alpha
component of SRC (under our assumption, all pixels are the same).
a is a value between 0 and 1 (while all the other ones are an integer
from 0 to 255).

Now;, the problem is the round operation, which makes us lose
information. This means that the OU Ti’ ed yalues we have, are
not the “real ones,” but a close approximation. We can rewrite the

equations above by making the rounding error explicit:
OUTI®? = SRCT® 5 g + DSTI*? x (1 - a) + €1
OUT}®? = SRC™® s o + DST}*? « (1 - a) + €

where €1 and €2 model the rounding errors. Given the nature of

the errors, we know that

—-— <€ =< =
2 2

Now, let us solve the system of equations for «. By subtracting
the second equations from the first one, we obtain:

outred — ouTyed €1 — €
DsTred - pSTyed  DSTIed — pSTyed

Now;, let us indicate with & the first part of the equation, and
with A = €1 — e2. We have:
. A
DSTred — psTyed

Given the constraints on €;, we have the following constraint on
A:
-1<A<1  or JAl<1
which implies that

X 1 A 1
+ _—_—
d d

DST/ ¢ - DST]*

1 2
This is our bound on &. Note that we can compute a candidate
value for & for each of the RGB components of each pairs of pixels.
Of course, some pixels will give us a less information than others,
but we can always select more pixels to refine the bound we have.

B SCREENFILTERS

Package Name # of Installs

jp-ne.hardyinfinity.bluelightfilter.free 10M-50M
com.urbandroid.lux 5M-10M
com.eyefilter.nightmode.bluelightfilter 5M-10M
pt.bbarao.nightmode 5M-10M
com.eyefilter.night 5M-10M
com.arrowsapp.hightscreen 1M-5M
es.richardsolanofilter 1M-5M
com.mlhg.screenfilter 500K-1M
bluelight.filter.sleep.warmlight.eyes.battery 500K-1M

com.ascendik.eyeshield 100K-500K

com.kapron.ap.eyecare 100K-500K

Table 1: These apps’ core functionality is to create a screen
filter to change its color tonality. We have manually tested
all these apps, and they all require the “draw on top” permis-
sion, and they all work by creating a persisent, fullscreen,
semi-trasparent overlay on top of every other app. Thus,
these apps directly conflict with all existing protection
mechanisms against clickjacking, causing backward com-
patibility issues.
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Figure 5: (a) The original non-modified Play Store, where dis-
played price is 2.99 (DST). (b) A simulation of an attacker
attempting to bypass our defense mechanism by creating a
semi-transparent overlay (which triggers o and SRC analy-
sis) and where the price has been subtly changed from 2.99
to 1.99 (OUT).

(2) (b)

Figure 6: (a) This shows the candidate version for SRC com-
puted by CLICKSHIELD. (b) This shows the same SRC image,
but “zoomed in” to show the small pixel difference that re-
sponsible for the subtle price change. This scenario repre-
sents one of the most challenging scenarios for our defense
mechanism, but it is properly handled: the small difference
is already enough to be flagged as suspicious, and alert the
user.



Figure 7: Application drawing widget shown in (a) is using a
small opaque widget drawn at margin: it is configured to cap-
ture the click of the user. When the user press on top of the
widget, it will show some information about the current au-
dio being played. The application drawing (b) instead is us-
ing a different configuration of the widget: this time it is not
configured to intercept user click. The widget is drawn on
the upper-left corner of the screen and the number “1” repre-
sents how many available wifi network are present nearby.

Figure 8: This represents the scenario for which Crick-
SHIELD raised a false warning.

Figure 9: Both the samples are representing a “custom
launcher” (a) is drawn in the bottom-left corner and it is
configured as a small widget, opaque and clickable overlay:
once the user interacts with it, the widget will show some
applications to launch. Similarly (b) is providing the same
functionality but the way the widget is configured is differ-
ent: for this sample, the widget is drawn in the right side of
the screen as an opaque and clickable overlay.

O

Say "Ok Google' &

Figure 10: (a) shows a custom floating, semi-transparent and
clickable widget drawn by a third-party application: it is
used to better inform the user about the status of the battery.
(b) represents a similar widget as the one described before
(this time it is fully opaque) with a different functionality:
once clicked, the widget will redirect the user to a “note” she
wrote (like a shortcut).



D SYSTEMATIZATION OF CLICKJACKING ATTACKS

Vulnerable Component Status Already known?  # of clicks  Net effect

Permissions Fixed via Hide Overlays Yes [17] 1 Attacker can lure the user to grant additional permissions

Accessibility Service (a11ly)  Fixed via Hide Overlays Yes [2, 10, 17] 3 Attacker can lure the user to grant ally permission

Camera Unfixed Yes [29] 1 Attacker is able to capture image from camera

Contact Unfixed Yes [29] 1 Attacker is able to get access to contacts

SoundRecorder Unfixed Yes [29] 1 Attacker is able to record sound

Text Messages Unfixed Yes [29] 1 Attacker can send SMS on behalf of the victim

Package Installer Fixed via Obscure Flag Yes [29] 1 Attacker is able to install and uninstall arbitrary application

Google Play Store Unfixed No 2/3 Attacker can install and open an arbitrary app from the
Play Store with permissions enabled at install-time

Chrome Web Browser Unfixed No Variable Attacker can perform web clickjacking attacks and bypass
web-related defense mechanisms

GMail Client Unfixed No 1 Attacker can send emails on behalf of the victim

Facebook and Twitter Unfixed No 1 Attacker can impersonate the user on social networks

WhatsApp and Signal Unfixed No 1/2 Attacker can deanonymize the victim by leaking her phone

number or send messages on her behalf

Google Authenticator Unfixed No 1 (long click)  Copy the GAuth token to the clipboard, which is readable
by any app (no permission required)

Lookout Mobile Security Unfixed No 3 Attacker can silently disable the security checks

Table 2: Systematization of the attacks. For each attack, we report the vulnerable component, the current status of the patching,
if the attack was already known, the number of clicks to hijack, and what is the net effect of the attack.
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