Towards HTTPS Everywhere on Android:

ARTIFACT
EVALUATED

yusenix
ASSOCIATION

We Are Not There Yet
Andrea Possemato Yanick Fratantonio
IDEMIA and EURECOM EURECOM

Abstract

Nowadays, virtually all mobile apps rely on communicating
with a network backend. Given the sensitive nature of the data
exchanged between apps and their backends, securing these
network communications is of growing importance. In recent
years, Google has developed a number of security mechanisms
for Android apps, ranging from multiple KeyStores to the
recent introduction of the new Network Security Policy, an
XML-based configuration file that allows apps to define their
network security posture.

In this paper, we perform the first comprehensive study
on these new network defense mechanisms. In particular, we
present them in detail, we discuss the attacks they are defending
from, and the relevant threat models. We then discuss the first
large-scale analysis on this aspect. During June and July 2019,
we crawled 125,419 applications and we found how only 16,332
apps adopt this new security feature. We then focus on these
apps,and we uncover how developers adopt weak and potentially
vulnerable network security configurations. We note that, in
November 2019, Google then made the default policy stricter,
which would help the adoption. We thus opted to re-crawl
the same dataset (from April to June 2020) and we repeated
the experiments: while more apps do adopt this new security
mechanism, a significant portion of them still do not take fully
advantage of it (e.g., by allowing usage of insecure protocols).

We then set out to explore the root cause of these weaknesses
(i.e., the why). Our analysis showed that app developers
often copy-paste vulnerable policies from popular developer
websites (e.g., StackOverflow). We also found that several
popular ad libraries require apps to weaken their security
policy, the key problem lying in the vast complexity of the ad
ecosystem. As a last contribution, we propose a new extension
of the Network Security Policy, so to allow app developers
to embed problematic ad libraries without the need to weaken
the security of their entire app.

1 Introduction

Nowadays, users rely on smartphones for a variety of security-
sensitive tasks, ranging from mobile payments to private
communications. Virtually all non-trivial mobile apps rely on
communication with a network backend. Given the sensitive
nature of the data exchanged between the app and the backend,
developers strive to protect the network communication by

using encryption, so that network attackers cannot eavesdrop
(or modify) the communication content. However, several
works have shown how properly securing network connections
is still a daunting challenge for app developers.

Within the context of Android, in recent years, Google has
introduced several new network security features to tackle these
problems. For example, starting from Android 4.x, Android
started to display alert information to the user if a “custom”
certificate was added to the set of trusted CAs. Later versions of
Android started supporting two different repositories for CAs:
the System KeyStore, which contains the “default” set of trusted
CAs; and the User KeyStore, which contains custom CAs
“manually” added by the user. This separation allows Google to
make apps trust only the system CAs by default. From Android
6.0, Google started to push towards “HTTPS everywhere”
even further. It first introduced a new app attribute (that could
be specified in the app’s manifest) to specify whether cleartext
(HTTP) connections should be allowed or blocked. It then
extended these settings by introducing the Network Security
Policy (NSP, in short): this mechanism allows a developer to
specify complex policies (with an XML configuration file)
affecting the network security of her app.

Motivated by these recent changes and by their potential
security impact on the ecosystem, in this paper we present the
first comprehensive study on these new defense mechanisms.
We first discuss in detail these new features, the attacks that
are mitigated by the NSP, and the relevant threat models. We
then highlight several security pitfalls: since the policy allows
the developer to define very complex configurations, they are
prone to misconfigurations. We identified several patterns for
which policies may provide a false sense of security, while,
in fact, they are not useful.

Guided by these insights, we then present the first analysis
of the adoption of the Network Security Policy on the Android
ecosystem. This analysis, performed over 125,419 Android
apps crawled during June and July 2019, aims at characterizing
how developers are using these new features and whether they
are affected by misconfigurations. The results are concerning.
We found thatonly 16,332 apps are defining aNSP and that more
than 97% of them define a NSP to allow cleartext protocols.
Since starting from November 2019 Google changed some
important default values related to NSP (and especially related
to cleartext), we repeated the experiments over a fresh crawl
of the same dataset (performed from April to June 2020): Our
results show that while more apps do adopt this new security

mechanism, a significant portion of them still do not take fully
advantage of it (e.g., by allowing usage of insecure protocols).

We then set out to explore why apps adopt such permissive
policies. We found that many of these policies are simply
copy-pasted from popular developer websites (e.g., StackOver-
flow). Upon closer inspection, we also found how many of the
weak policies could be “caused” by embedding advertisement
libraries. In particular, we found that the documentation of
several prominent ad libraries requires app developers to adapt
their policy and make it very permissive, for example by allow-
ing the usage of cleartext within the entire application. While
the NSP format provides a mechanism to indicate a domain
name-specific policy, we found that the complex ad ecosystem
and the many actors that are part of it make it currently
impossible to adopt safer security policies. Thus, as another
contribution of this paper, we designed and implemented an
extension of the current Network Security Policy, which allows
developers to specify policies at the “app package” granularity
level. We then show how this proposal enables app developers
to embed ad libraries without the need of weakening the policy
of the core app, how it is fully backward compatible, and how
it can thus act as a drop-in replacement of the current version.

In summary, this paper makes the following contributions:

* We perform the first comprehensive study on the newly
introduced Android network security mechanisms,
identifying strengths and common pitfalls.

* We perform the first large-scale analysis on the adoption
of the Network Security Policy on the Android ecosystem,
using a dataset of 125,419 apps. Our study found that
a significant portion of apps using the NSP are still
allowing cleartext.

* Weinvestigate therootcauses leading to weak policies,and
we found that several popular ad libraries and the complex
advertisement ecosystem encourage unsafe practices.

* We propose a drop-in extension to the current Network
Security Policy format that allows developers to comply
with the needs of third-party libraries without weakening
the security of the entire application.

In the spirit of open science, we release all the source code
developed for this paper and the relevant datasets.

2 Network Communication Insecurity

This section explores the different threats that an application
might be exposed to due to insecure network communications.
Foreach of the issues, we also discuss the relevant threat models.

2.1 HTTP

An application using a cleartext protocol to exchange data
with a remote server allows an attacker to mount so-called

Man-In-The-Middle (MITM) attack, through which it is
possible to eavesdrop (or even modify) the network traffic at
will. This, in turn, can lead to the compromisation of the user’s
private information or of the application itself [4,32,37,49].
The actual severity of this threat changes depending on the
nature of the data exchanged by the application and the network
backend. In other words, this HTTP scenario can be exploited
by an attacker within the following threat model:

Threat Model 1. An attacker on the same WiFi network (or on
the network path) of the victim can eavesdrop and arbitrarily
modify apps’ unencrypted connections and data at will.

2.2 HTTPS and Certificate Pinning

By adopting the “secure” version of HTTP, HTTPS, it is possi-
ble to perform network operations over a secure and encrypted
channel. Exchanging data using HTTPS (SSL/TLS) ensures
integrity, confidentiality, and authenticity over the connection
between the application and the remote server. This mechanism
works as follows. First, when an application tries to contact
aremote server using SSL/TLS, a “handshake” is performed.
During this phase, the server firstsends its certificate to the client.
This certificate contains multiple pieces of information includ-
ingitsdomainname andacryptographic signature by aso-called
Certificate Authority (CA). To determine whether the client
should trust this CA, the system consults a set of hardcoded pub-
lickeys of the mostimportant (and trusted) CAs: If the certificate
is signed (directly or indirectly) by one of these CAs, the certifi-
cate is then considered trusted and the (now secure) connection
can proceed; otherwise, the connection is interrupted [1].
While SSL/TLS is a powerful mechanism, it can be
compromised by an attacker within the following threat model:

Threat Model 2. An attacker that can obtain a rogue certificate
can perform MITM over HTTPS connections. We consider
a certificate to be “rogue” when it is correctly signed by a
(compromised) trusted CA without an attacker owning the
target domain name [2, 33].

Attacks within this threat model can be mitigated by imple-
menting Certificate Pinning. Certificate pinning consists in
“hardcoding” (or, pinning) which is the expected certificate(s)
when performing a TLS handshake with a given server. From
the technical standpoint, this “expectation” is hardcoded within
the application itself, and the app can thus verify, during the
handshake, that the certificate sent from the server matches with
the expected one. Even though pinning is a powerful security
mechanism, previous works have shown how it is very chal-
lenging to properly implement it. In fact, to implement pinning,
developers are tasked to rely on a wide variety of libraries,
each of which exposes a distinct set of APIs. Handling diverse
implementations of pinning may push developers to take some
shortcuts: It was shown how it is not uncommon for developers
to rely on “ready-to-use,” but broken, implementations of cer-
tificate pinning copied from websites like StackOverflow [25].

These broken implementations might lead to accepting arbi-
trary certificates without even verifying which CA signed them,
or whether the certificate was issued for the given domain. More-
over, it has also been shown how even popular network libraries
themselves may fail to properly implement pinning [31].

2.3 User Certificates

The Android system comes with a set of pre-installed CAs to
trust and uses them to determine whether a given certificate
should be trusted. These CAs reside in acomponent named Key-
Store. The system also allows the user to specify a User KeyStore
and to install custom CAs. There might be situations where the
custom CAs allow to perform a MITM over SSL/TLS connec-
tions (see Section 4). However, performing MITM over a secure
connection should not always be considered a malicious activ-
ity. For example, proxies used to debug network issues rely on
the same technique. Self-signed certificates generated by these
tools do not have a valid trust chain and thus cannot be verified,
and the app would terminate the connection. By adding a custom
CA, apps can successfully establish a network connection.

Unfortunately, User KeyStore and self-signed certificates
can also be abused by malware. Of particular importance
is the emerging threat of “stalkware” (also known as
“spouseware”) [17,29]. In short, this scenario can be exploited
by an attacker within the following threat model:

Threat Model 3. An attacker that has physical access to
the device can silently install a new custom certificate to
the User KeyStore, and mount MITM (including on HTTPS
connections) to spy the user’s activities.

3 Network Security Policy

To make the adoption and implementation of “secure con-
nections” easier for a developer, Google recently introduced
several modifications and improvements, which we discuss
in this section.

The first problem that Google tried to address relates to the
installation of self-signed certificates. In very early versions of
Android, it was possible to silently install one of these certifi-
cates, thus allowing anyone who controls it to perform MITM
on SSL/TLS connections. In Android 4.4, however, Google
introduced the following change: if a self-signed certificate
is added to the device, the system would display a warning
message informing the user about the risks and consequences
of MITM on SSL traffic [45]. However, since there might be
scenarios where trusting a (benign) self-signed certificate is
necessary (e.g., to perform network debugging), Google de-
cidedto split the KeyStore into two entities. The first one, named
System KeyStore, is populated with pre-installed CAs, while
the second one, named User KeyStore, allows the user to install
self-signed certificates without altering the System KeyStore.

The second problem Google tried to mitigate is the adoption
of cleartext protocols [3]. Starting from Android 6.0, Google

introduced a new security mechanism to help apps preventing
cleartext communication, named Network Security Policy [5].
With this new policy, an app can specify the usesCleartext-
Traffic boolean attribute in its manifest file and, by setting
it to false, the app can completely opt-out from using cleartext
protocols, such as HTTP, FTP, IMAP, SMTP, WebSockets or
XMPP [7]. Moreover, from Android 7.0, the new default is that
apps donottrust CAs addedto the User KeyStore [14]. Itis possi-
ble to override this default, but the developer needs to explicitly
specify the intention of using the User CAs within the policy.

Note that, from an implementation point of view, the
policy is not enforced by the operating system (as it would
be impractical), but it is up to the various network libraries
to actually honor it (e.g., by interrupting an outbound HTTP
connection if cleartext traffic should not be allowed). Note also
that, to address backward compatibility concerns, for an app
targeting an API level from 23 to 27 (i.e., from Android 6.0 to
Android 8.1), the default value of the usesCleartextTraf-
ficattribute is true. However, if an app targets API level 28
or higher (i.e., Android 9.0+), then the default for that attribute
is false, forcing developers to explicitly opt-out from this
new policy in case their apps require HTTP traffic.

While this policy is a significant improvement, for some
apps it may currently be impractical to completely opt-out from
cleartext communications. In fact, this policy follows an “all-or-
nothing” approach, which might be too coarse-grained. This is
especially true when a developer is not in complete control of its
codebase, such as when embedding closed-source third-party
libraries. In fact, these third-party libraries may reach out to re-
mote servers using cleartext protocols or to some domain names
that are not even supporting HTTPS. To allow for a more granu-
lar specification, with the release of Android 7.0, Google intro-
duced an extended version of the NSP, which we discuss next.

3.1 Policy Specification

The new version of the NSP, introduced by Google in Android
7.0, has undergone a complete redesign [6]. The policy now
resides on an external XML file and it is not mixed anymore
with the AndroidManifest. The most interesting feature
introduced in this new version is the possibility to specify
additional network security settings other than allowing or
blocking cleartext protocols. Moreover, to overcome the lack
of granularity of the previous version, the policy now allows
for more customizations through the introduction of the new
base-config and domain-config XML nodes. The seman-
tics of these two nodes is the following: all the security settings
defined within the base-config node are applied to the
entire application (i.e., it acts as a sort of default); the domain-
config node, instead, allows a developer to explicitly specify
a list of domains for which she can specify a different policy.

Cleartext. Allowing or blocking cleartext protocols can now
be easily achieved with the cleartextTrafficPermitted
attribute. Moreover, the developer can decide “where” to apply

this security configuration. This attribute can be defined both
within a “base” and “domain” config node. To enforce this
setting atruntime, networking libraries canrely onthe Network-
SecurityPolicy.isCleartextTrafficPermitted()

API, which returns whether cleartext traffic should be allowed
for the entire application. Instead, to check if cleartext
traffic is allowed for a given host, a library can use the
isCleartextTrafficPermitted(String host) APL

Certificate Pinning. Configuring certificate pinning is now
much simpler than it was in the past. First, since certificate
pinning is used to verify the identity of a specific domain, all
the configurations need to be defined in a domain-config.
Second, the developer needs to define a pin-set node (with
an optional expiration attribute to specify an expiration date
for this entry). The pin-set node works as a wrapper for one
or multiple pin nodes, each of which can contain a base64-
encoded SHA-256 of a specific server’s certificate. Multiple
pins can be used as a form of backup, to avoid issues while per-
forming key rotations, or to pin additional entities like the Root
CA that emitted the certificate for the domain. The connection
is allowed if and only if the hash of the certificate provided by
the server matches with at least one hash in the pin-set node.

KeyStore and CAs. The new version of the policy allows a
developer to specify which KeyStore to consider as trusted
when performing secure connections. The developer has first
to define a trust-anchors node, which acts as a container for
one or more certificate nodes. Each certificate node
must have a src attribute, which indicates which certificate(s)
to trust. The values for src can be one of the following:
system, which indicates that the System KeyStore, the default
one; user, which indicates the user-installed certificates
within the User KeyStore; or a path to an X.509 certificate
within the app package. When multiple certificate nodes
are defined, the system will trust their union.

Besides, the developer can also specify an overridePins
boolean attribute within a certificate node. This attribute
specifies whether the CAs within this certificate node should
bypass certificate pinning. For example, if the attribute’s value
is true for the system CAs, then pinning is not performed on
certificate chains signed by one of these CAs.

Debug. Applications protected by the NSP are more difficult
to debug. To address these concerns, the policy can contain
a debug-overrides node to indicate which policy should
be enforced when the app is compiled in debug mode.! If the
developer leaves a debug-override node in the policy of a
release build, the content of the node is simply ignored.

3.2 Towards HTTPS Everywhere

Starting from Android 7.0, at apps’ installation time, the system
checks whether the developer did define a policy: if yes, it loads

! Apps can be compiled in release or debug mode. This can be done by
setting the android: debuggable manifest attribute accordingly. Apps must
be compiled in release mode to be accepted on the Play Store.

the policy; otherwise, it applies a default one. Note also that if a
policy is defined butitdoes not specify anode or an attribute, the
system fills the missing values by inheriting them from a similar
node, or, when none are available, from the default configuration.
The default values applied by the system do change over time
depending on the target API level and are becoming stricter—
and by forcing app developers to target high API levels to be
admitted on the official Play Store, Google is leading a push
towards HTTPS everywhere. We now discuss how these default
values change depending on the target API level.

API 23 and Lower. An application targeting an API level
lower or equal than 23 cannot specify a policy since this
mechanism was introduced from API level 24. In this case,
the system will then enforce the following default policy:
<base-config cleartextTrafficPermitted="true">
<trust-anchors>
<certificates src="system" />
<certificates src="user" />

</trust-anchors>
</base-config>

This configuration allows an app to use cleartext protocols and
to trust the union of CAs from both System and User KeyStore.

From API 24 to 27. The default policy for applications
targeting API levels from 24 to 27 changes as follows:
<base-config cleartextTrafficPermitted="true">
<trust-anchors>
<certificates src="system" />

</trust-anchors>
</base-config>

That is, cleartext traffic is still allowed, however, only CAs in
the System KeyStore are trusted by the application.

API Level 28 and Higher. For apps targeting an API level
greater or equal of 28, the policy is even stricter:
<base-config cleartextTrafficPermitted="false">
<trust-anchors>
<certificates src="system" />

</trust-anchors>
</base-config>

This change enforces that all cleartext protocols are blocked [8].

Starting from November 1st, 2019, all applications (and
updates as well) published on the official Google Play Store must
target at least API level 28, corresponding to Android 9.0 [28].
In Appendix, we report a concrete example of a (complex)
policy that touches on the various points previously discussed.

3.3 TrustKit

One library that is particularly relevant for our discussion is
TrustKit[19]. This library allows the definition of aNSP forapps
targeting versions of Android earlier than 7.0 (which, as we men-
tioned before, do not support NSP). From a technical standpoint,
this library reimplements the logic behind the NSP, allowing an
application to import it as an external library. Note that TrustKit

only supports a subset of features: the developer cannot specify
a trust-anchors within a domain-config node, and it is
not possible to trust CAs in the User KeyStore. However, the
library implements a mechanism to send failure reports when
pinning failures occur on specific domains, allowing a devel-
oper to constantly monitor for pinning violations. Interestingly,
this feature is not available by the system-implemented NSP.

4 Policy Weaknesses

As discussed in the previous section, NSP is undoubtedly mak-
ing the specification of a fine-grained network policy more prac-
tical. However, each of the features introduced by the NSP may
be inadvertently disabled or weakened by an inexperienced de-
veloperduring the definition of the policy. Unfortunately, to date,
there are no tools that help developers to verify the correctness
of the defined policy and to check that the settings she wanted
to implement are effectively the ones enforced by the system.
This section discusses several potential pitfalls that may
occur when an inexperienced developer configures a NSP.

Allow Cleartext. As described in the previous section, a
developer has multiple ways to define the usage of cleartext pro-
tocols. For example, the developer can define a list of domains
and limit the adoption of cleartext only to them. Otherwise,
if the application contacts all the endpoints securely, she can
completely opt-out from cleartext communications and be sure
to identify potential regression issues. However, a developer
may configure her application with the following policy:

<base-config cleartextTrafficPermitted="true">
</base-config>

This configuration allows the application to use cleartext
protocols, potentially exposing the user and the application
to threats described in Section 2. To make things worse, as
we will discuss throughout the paper, several online resources
suggest implementing this very coarse-grained policy, with
the goal of disabling the safer defaults: the main concern
is whether the inexperienced developer is fully aware of the
security repercussions of such policy.

For the sake of clarity, it is important to mention how this spe-
cific configuration does not impact an application where all the
endpoints are already reached securely—this policy is useful
only when acting as a safety net. In other words, this configura-
tion does not lower nor weaken the security of an application per-
forming all the network operations using, for example, HTTPS.
However, this configuration is not able to identify regression
issues: if an endpoint is inadvertently moved from HTTPS to
HTTP, the insecure connection is allowed due to this “too open”
policy (while the default policy could have blocked that). A
similar scenario also affects complex apps, which are either de-
veloped by different teams within the same organization or that
are developed by embedding a high number of third-party de-
pendencies: in these cases, itis extremely challenging, if not out-

right impossible, to make sure that no connection would rely on
cleartext protocols. Unfortunately, as we previously discussed,
even one single endpoint (or resource) reached through HTTP
might be enough to compromise the security of the entire app.

Certificate Pinning Override. The NSP makes the adoption
and configuration of certificate pinning straightforward. The
developer now only needs to declare a valid certificate for each
of the domains she wants to protect: then, the system takes care
of all the logic to handle the verification of the certificates at
connection time. On the other hand, we identified pitfalls that
an inexperienced developer may not be aware of. For example,
consider the following policy (which we took from a real app):

<domain-config>
<domain>DOMAIN</domain>
<pin-set>
<pin digest="SHA-256">VALID_HASH</pin>
</pin-set>
</domain-config>
<trust-anchors>
<certificates src="system" overridePins="true"/>
</trust-anchors>

We argue that this policy is misconfigured and that it is
very likely that the developer is not aware of it. Given the
specification of the pin-set entries, it is clear that the intent
of the developer was to actually implement certificate pinning.
However, the overridePins attribute of the system certificate
entry is set to true: this indicates that certificate pinning
should not be enforced for any CAs belonging to the System
KeyStore, thus making the previous pin-set specifications
useless. We believe that this kind of policy offers a “false sense”
of security for a developer, especially since no warnings are
raised at compilation time nor at runtime.

Silent Man-In-The-Middle. Switching from HTTP to HTTPS
does not always guarantee that the communication cannot
be eavesdropped. As described in Section 2, under certain
specific circumstances, it is possible to perform MITM over
SSL/TLS encrypted connection and break the confidentiality,
integrity, and authenticity of the communication. Consider
the following policy taken from a real app:

<trust-anchors>
<certificates src="system"/>
<certificates src="user"/>
</trust-anchors>

This policy may expose an application to MITM (see Threat
Model 3). In fact, this policy trusts the union of the CAs in the
System and User KeyStore: hence, the traffic of the app can be
eavesdropped by anyone who controls a custom CA in one of
the KeyStores. This policy overrides the default configuration
introduced on Android 7.0, which prevents applications from
trusting CAs stored in the User KeyStore when performing
secure connections. Even though trusting “user” certificates
may be the norm at the development phase, we believe that a
“production app” that actually trusts user certificate is often
a symptom of misconfiguration since it is very rare that an

app would actually need to trust User CAs. For example, even
network-related apps such as VPN apps do not need to trust
User CAs, even when trusting custom certificates is required:
in fact, VPN apps can hardcode the custom CA within the app,
and add a trust-anchors node pointing to it. This has the net
effect of trusting only this specific certificate, and nothing else.
One scenario where trusting User CAs seems required relates
to Mobile Device Management apps (MDM), which need to
install different CAs coming from different sources and that
cannot be pre-packaged within the released app. However, these
MDM apps constitute a rare exception, rather than the norm.

5 Policy Adoption

As one of the contributions of this paper, we set out to explore
how the NSP has been adopted by the Android ecosystem. This
section discusses our findings, and it is organized as follows.
First, we present the dataset we used for our study (§5.1). Sec-
ond, we discuss how apps use this new security mechanism, we
provide statistics on how frequently each feature of the policy is
used, and we present insights related to apps adopting policies
that are inherently “weak” and that likely constitute inadvertent
misconfigurations (§5.2). Last, we conclude this section with
an analysis of network libraries, which, from a technical
standpoint, is where the “enforcing” of the policies actually
lies; we have also developed an automatic testing framework
to determine whether a given network library correctly honors
the various elements of network policies (§5.3).

5.1 Dataset

To perform our analysis, we first built a comprehensive
and representative dataset of apps. To determine which
apps to download, we obtained the package names from
AndroidRank [9], a service that provides “history data and
list of applications on Google Play.” We opted to select the
“most-installed applications” on the Google Play Store accord-
ing to the installation distribution, with apps whose unique
installation count ranges from 10K to more than a billion. In
total, we downloaded 125,419 apps, during June and July 2019.

5.2 Dataset Exploration & Weaknesses

Methodology. After extracting the policies from the apps,
we first perform clustering to highlight common patterns and
whether two or more apps share the same exact policy (or
specific portions of it). In particular, we group two policies in
the same cluster if they contain the same nodes, attributes, and
values, in any order. This approach also helps us to determine
whether apps developers “copied” policies from known
developer websites, such as StackOverflow. We then analyze
the clusters to identify peculiar configurations or weaknesses.
Once an interesting configuration has been identified, we then
proceed by performing queries on the entire dataset (that is,

inter-cluster) to measure how common this specific aspect of
the configuration is and whether it affects many apps.

We then performed an additional analysis step, which is
based on similar clustering techniques, but performed over
a normalized dataset. We refer to a policy as “normalized”
after we remove artifacts that are clearly specific to an app. We
replace all the concrete values of domains with the value URL,
all certificate hashes with HASH, and all the expiration dates
with DATE. The rationale behind this normalization step is to
be able to group policies “by semantics,” which is not affected
when some specific concrete values differ.

Overview. One of the first insights is that, even though the
NSP was firstly introduced in Android 6.0 in 2015, we note
how 109,087 of the apps do not implement any policy (in
either of the two forms). Of the remaining 16,332 apps that do
implement a policy, 7,605 of them (6% of the total) adopt the
original version of the policy (available in Android 6.0), while
8,727 (6.95%) adopt the new, more expressive policy format
(available in Android 7.0). Our dataset is distributed as follows:
0.5% of the apps (83) target API level 29, 75% (12,261) API
level 28, 11% (1,803) API level 27, 12% (2,077) API level 26,
and the remaining 0.6% (108) target API level 25 or lower.

The first clustering process creates in total 271 clusters
(where a cluster is formed by at least two apps): these clusters
group 7,184 apps out of the 8,727 apps defining the policy—the
remaining 1,543 policies were unique and did not fit any cluster.
The clustering process on the normalized dataset, instead,
generates 170 clusters, this time with only 311 applications
not belonging to any group. The remainder of this section
discusses several interesting insights and common patterns.

Cleartext. Among the generated clusters, one is particularly
big: it is formed by 1,595 apps. All these apps share the
trivial policy of “allowing cleartext globally.” The exact same
configuration is also used by other 2,016 apps belonging to
60 different clusters. Among the apps not belonging to any
cluster, this configuration is used by 199 of them. Thus, in total,
4,174 apps of our dataset allow cleartext for the entire app.
We then investigated how many apps opted out from cleartext
and we found that only 156 apps block cleartext for the entire
app. Then, we considered also apps using the first version of
the policy since it also allows a developer to fully opt-in, or
opt-out, from cleartext. Among the 7,605 apps using the first
version of the policy, 97.5% (7,416) of them allow cleartext
protocols, while only the 2.48% (189) opted out from them.
As previously discussed in Section 3, the cleartext attribute
can also be enabled by default if an app is targeting an API level
lower or equal to 27 and it does not override it. By considering
also the default settings, the numbers are even more worrisome.
We noticed that among the 16,332 apps with a NSP, the 84.8%
of them (13,847) allow the usage of cleartext protocols. The
12.3% (1,837) of them enable cleartext due to the default config-
uration not being overridden. To conclude, only the 1.2% (170)
opt-out from cleartext just for a specific subset of domains.

% of Applications

N At S

5 10 15 /4L26

Number of Domains

Figure 1: The figure shows the CDF of the number of domains
defined within policies. Note how 62.5% of the apps do not
define a custom policy for any domain. The 21% of the apps
define exactly one domain, while the 8.5% specifies up to 2
domains within the policy. Note that the CDF has a long tail,
with several apps defining more than 30 domains within the
same policy, and two apps specifying 368 and 426 policies.

Domains. We then proceed by looking at apps using the
cleartext attribute on an explicit list of domains (using the
domain node). We identified only 2,891 apps allow cleartext
for a subset of domain while only 219 force the domain in the
list to be reached only securely. Figure 1 shows the cumulative
distribution function (CDF) of the number of domains defined
within policies. In general, most apps (~ 95%) specify custom
policies for at most three domain names.

Policy for 127.0.0.1. We then looked at clusters of more com-
plex policies, in terms of nodes and attributes, and we noticed
some interesting patterns. We identify how 492 apps configure a
very specificdomain-confignodeforthe IPaddress 127.0.0.1,
localhost. Even if this policy does not introduce any security
vulnerability and should be considered as a safe policy, we
found itinteresting: while it may be common practice to spawn a
local server, it is very uncommon that all the 492 apps define the
same policy for localhost. This configuration, however, is very
common among other apps: in total, we identify other 512 apps
belonging to 43 different clusters having the same domain-
config setup, and 109 apps not belonging to any cluster. Thus,
this specific domain configuration is used by 1,113 apps. We
then set out to pinpoint the underlying source of this policy, and
we eventually determined that this policy is defined by the Audi-
ence Network Android SDK, the Facebook advertisement frame-
work. In particular, we noticed how adeveloper who wants to use
this library must modify the policy to include this specific config-
uration to avoid unintended behavior. The official library’s doc-
umentation makes clear that this modification is mandatory due
tothe internals of the library itself. This finding opens a scenario
that is different than the simple “developers copy policies”: in

this case, an advertisement library explicitly requested the devel-
opertomodify herpolicy to make the library work. We suspected
that this pattern could be common to many other advertisement
libraries. Unfortunately, our suspicion proved to be correct: we
identified several ad libraries that explicitly request developers
to copy-paste a given policy. Moreover, we found how the ad
libraries’ documentations often attempt to convince developers
by including misleading and/or inaccurate arguments, and how
many of such policies’ modifications actually negatively affect
the overall security of the entire app. We postpone an in-depth
discussion of these findings to the next section (Section 6).

Trusted Certificates. Another interesting cluster is formed
by 427 apps, which use a trust-anchors node for the entire
app to trust the union of System and User CAs. As previously
discussed, this configuration might allow, under specific
circumstances, to perform a MITM over SSL/TLS connections
(see Threat Model 3). Nonetheless, we notice how this specific
configuration is shared among other 1,083 apps, 600 of which
belong to 24 different clusters. We then investigate how many
apps use the same configuration for a subset of domains ending
up identifying 73 apps: thus, in total, we identified 1,159 apps
adopting this configuration, among which 1,038 of them allow
their SSL/TLS traffic to be potentially intercepted.

Domain example. com and Invalid Digests Another peculiar
configuration comes from apps using the domain example.com
within their policy. We identified this interesting configuration
from a cluster of 41 apps. However, there is, of course, no
need for an app to protect this domain since this example.com
domain is clearly not relevant. Thus, we looked for similar apps
and we found out that in total, other 58 apps use this domain,
48 of which come from 7 different clusters. We then found that
these policies are copied verbatim from the Android Developer
website and from StackOverflow. We tracked down the original
policies combining both the domain name and the unique digests
defined in some of the policies. These policies define certificate
pinning on example.com or with invalid digests formed by “B”
repeated 44 times (see the Appendix for the complete policies).
We believe that there are two possible explanations to justify
the adoption of these (useless) policies. In the first one, the
developer wants to define one specific feature of the policy: she
then copies an existing policy that contains both the requested
feature and the unique configuration of certificate pinning. Inthe
second one, this policy mighthave been used by a developer who
was looking for a certificate pinning implementation and she
copied the firstavailable policy. While copying security policies
that contain “dummy”’ domain names such as example.com is
not a security problem per se, we believe that these policies
may create a false sense of security in the developer’s mind:
the developer may wrongly believe that certificate pinning is
correctly implemented in her application, while, in fact, it is not.

Certificate Pinning. Certificate pinning increases the security
of the communication ensuring integrity, confidentiality, and
authenticity. Thankfully, implementing certificate pinning via

NSP is now much simpler than it was in the past. However,
we found that only 102 applications enforce it through the
policy. Out of these 102 apps enforcing certificate pinning,
an interesting cluster is constituted by apps that implement
pinning but then mistakenly override it. We identified 9 apps
that specify one or more pin-set, but set the overridePins
attribute to true, making the various pin-set useless. We
argue that it is very likely that the developer is not aware of
it, otherwise she would not have specified any pin-set entry.
We believe Android Studio (or other IDEs) should flag this
kind of policy as potentially misconfigured.

Invalid Attributes. We identified a group of apps defining
attributes that are not specified within the official documen-
tation [24]. For example, we identified two apps defining the
usesCleartextTraffic attribute in the policy (even if this
is only valid in the o/d version of the NSP), or two apps defining
the cleartextTrafficPermitted attribute within a wrong
node. We also found one app declaring the hstsEnforced
attribute, which is not mentioned in the official documentation.
However, by looking at the source code of the policy parser, we
notice how this attribute is actually recognized as valid. This
attribute allows a developer to define HST'S for the WebView
component of her application (which would “force” the Web-
View to always contact via HTTPS websites sending the HSTS
header [18]). We note how the concept of HSTS significantly
overlaps with the cleartext aspect of the NSP. We investigated
the reason why this attribute is still available within the NSP and
we found out that it may exist because older versions of the Web-
View were not enforcing the cleartextTrafficPermitted
attribute [24] (but were enforcing HSTS instead).

TrustKit. The cluster of policies defined using TrustKit
is formed by 53 apps. Among these apps, 10 define a
reporting-endpoint to use when a pinning failure is
identified, while 16 apps explicitly disabled this feature. To
conclude, 46 apps define certificate pinning within the policy.

Remaining Apps. Our methodology based on clustering and
targeted queries allowed us to systematically group a vast
portion of our dataset. However, as we mentioned, 311 apps
did not fit any cluster. We then manually inspected them all,
to look for additional interesting patterns. Among these, we
identified 98 apps that define a very unique policy in terms
of domain nodes used with the policy. The other 46 apps
shared a specific policy that did not take advantage of the
“wrapper nodes” like pin-set or domain-config: for each
of the domains, these apps opened a new domain-config
node each time instead of defining all the domains within
one node. We also found 44 apps that specify more than one
custom certificate. Another interesting configuration comes
from apps whose policy appears very verbose and that could
have been reduced. We noticed how 32 applications specify
a default “allow cleartext” for the entire app and, on top of
that, configured a very detailed list of domains and subdomains
with the same exact policy. 21 applications defined additional

text (like comments or left-over in between nodes) that is then
removed by the system during the parsing process. To conclude,
the remaining apps defined very unique and complex policies
that do not belong to any of the aforementioned groups, but that,
from the security perspective, do not represent anything special.

Dataset Evolution. Starting from November 1st, 2019, all
apps must target at least API level 28 [28]. This means, from
aNSP perspective, that all the new apps, by default, will forbid
cleartext. Since our dataset was crawled before November (see
Section 5.1), we decided to repeat some of the measurements,
this time on a dataset downloaded after this new mandatory
requirement. Our goal is to investigate how the apps evolved
after the introduction of the new default value that forbids
the usage of any cleartext protocol. We started a re-crawl of
the same initial dataset, starting from the 125,419 package
names. These apps were re-crawled from April to June 2020.
We were able to download 86.5% of the initial dataset, for a
total of 108,542 apps. Of the remaining apps that we could not
re-download, 15,749 apps were removed from the Google Play
Store and 1,128 apps moved from a free to "paid" download or
introduced in-app purchases not available in our geographical
region. The apps that we were able to re-crawl are distributed
as follows: the 14.3% of the apps (15,531) target an API level
29, the 46.2% (50,191) instead target a level 28, 9.5% (10,351)
the level 27, 12.7% (13,795) level 26 and the remaining 17.2%
(18,674) target an API level 25 or lower.

Unsurprisingly, the number of apps defining a NSP
increased: 33.3% of the apps (36,165) now specify one
of the two types of NSP. Among these apps, the 65.5%
(23,718) still adopts the first version of the NSP through the
AndroidManifest, while the remaining apps (15,492) opted
for the new and more recent version. Interestingly, 8.4% of
the apps (3,045) use both versions of the policies.

We then looked for how many apps effectively adopted the
new default of forbidding cleartext protocols for the entire appli-
cation: surprisingly, approximately the 33% of the entire dataset
(35,789 out of 108,542) enforced a default configuration that
does not permit cleartext protocols. Out of these apps, 419 used
the first version of the policy. The remaining 67% of the apps still
configure aNSP that permits cleartexttraffic. From this 67%,the
32% (23,229) still adopt the first version of the policy. However,
whatitis interesting to notice is that 58% (42,353) of apps allow
cleartext due to default configuration, dictated by the API level.
To conclude, we note how only a small portion of apps, the 0.4%
(349), allow cleartext as base configuration and also define a set
of domains for which they allow only encrypted connections.

These results somehow highlight an ecosystem-wide prob-
lem that affects Android apps: even if Google provides a simple
and easy way to configure the SSL/TLS for an app (the NSP),
and even though it explicitly changed the defaults to force the
usage of cleartext protocols, a significant portion of apps still opt
to stick, for one reason or another, to plain and unencrypted net-
working protocols: while the community is making progress, we
are not there yet for a full adoption of HTTPS by Android apps.

5.3 Android Networking Libraries Adoption

So far, this section has focused on the exploration of how apps
adopt NSPs. However, we did not tackle the aspect of enforcing
these policies. The NSP is simply an XML configuration file,
and it is then up to the various network libraries to properly
honor (and enforce) what is specified by such configuration file.

To this end, we set out to explore how Android apps and
network libraries do enforce these policies. First, we checked
the official Android documentation, which states that “third-
party libraries are strongly encouraged to honor the cleartext
setting” [24]. We found the documentation concerning, for two
reasons. First, the wording of the documentation only mentions
that honoring the policy is “strongly encouraged.” However,
we believe that since the policy relates to security-relevant
aspects, network libraries should be forced to honor the
policy—and in case they do not, that should be considered
as a vulnerability. In fact, a network library not honoring the
policy would have the negative side-effect of silently making
the policy useless. Second, the documentation only mentions
the “cleartext settings.” However, as we discussed in Section 3,
the new version of the policy touches on many more aspects:
Unfortunately, the documentation does not even mention the
other features (e.g., which KeyStore to trust, pinning).

Next, we checked the official API, implemented by the
NetworkSecurityPolicy class. This is the API that, in
theory, network libraries should rely on to obtain the content
of the policy (and honor it). However, this API appears very
limited: the only available APIis isCleartextTrafficPer-
mitted(), which returns whether cleartext traffic should be
allowed. There is no other API to query the remaining fields
of the policy, and it is thus not clear how network libraries are
supposed to enforce them.

Forthesereasons, we setoutto explore how and whether popu-
lar network libraries honor the policy. The remainder of this sec-
tion discusses how we built a dataset of network libraries, an au-
tomatic analysis framework to test whether a given library hon-
ors the various aspects of a policy, and the results of this analysis.

Libraries Dataset. To perform this investigation, we first
built a comprehensive dataset of the most used networking
libraries. We identified these libraries from AppBrain [11],
a service that provides multiple statistics on the Android
application’s ecosystem such as “Android libraries adoption”
by different apps. Our dataset consists of all the network
libraries mentioned by AppBrain: URLConnection, Robospice,
HttpClientAndroid, AndroidAsync, Retrofit, BasicHttpClient,
OkHttp, AndroidAsyncHTTP, Volley, and FastAndroidNetwork-
ing. Except for URLConnection, which is the default HTTP
library on Android, all the libraries are “external,” which
means that app developers need to manually specify them as
external dependencies. Note that these external libraries, even
though they are not the default, are used by almost 30% of all
the apps published on the Google Play Store (~ 250K unique
apps). Table 3, in Appendix, provides more detailed statistics.

Analysis Framework. Determining whether a given library is
implementing the NSP is not a straightforward process. In fact,
the source code of these libraries is often not available, and
manual reverse engineering may be challenging and error-prone.
Thus, we opted for an automatic approach based on dynamic
analysis. We built an automatic framework to check whether
a given networking library honors the policy defined in an app.
Note that while for this paper we tested the ten popular network
libraries in our dataset, our framework is completely generic
and can be easily used to vet an arbitrary network library.

Our framework analyzes each network library individually.
For each of them, it performs the following steps. First, we
generate all the possible combinations of a policy, by combin-
ing all possible nodes, attributes, and representative values. In
particular, the framework considers the following nodes: base-
config, domain-config, pin-set, and trust-anchors.
For each node, it considers all the relevant child nodes, such as
domain,pin,and certificate. Eachnodeisthenconfigured
with all the possible attributes that might be used within a given
node, like overridePins for what concerns trust-anchors,
or src for the certificate node (see Section 3 for the entire
list). For what concerns the values, we generate “representative
values.” For the value field representing a certificate hash,
we generate various policies with the following values: a
valid hash matching the hash of the certificate actually used
during the tests, a valid hash that is different than the expected
one, and a non-valid hash (e.g., the character “A” repeated
several times). The combinations of all nodes, attributes, and
representative values, generates 72 unique policies.

Then, the framework creates an app that attempts to connect
to an endpoint via HTTP and via HTTPS by using the library
under test. The app is then built multiple times, each time with
a different policy. Each of these apps is then tested in three
different “testing environments,” each of which simulates the
different threat models discussed in Section 2: 1) the app is
tested without attempting to perform MITM; 2) we simulate
an attacker performing MITM (by using a proxy); 3) we
simulate an attacker performing MITM with the attacker’s
custom CA added to the User KeyStore. At each execution, the
framework logs whether a given connection with a given policy
in a given testing environment was successful or not. These
logs are compared with a ground truth, which is generated
by a Python-based implementation that takes into account
the various aspects of the policy and the various testing
environments. We flag a library as compliant if and only if the
runtime logs match with the expectations of the ground truth.

Compliance Results. First, we identified that HttpClien-
tAndroid, AndroidAsync, and AndroidAsyncHTTP are not
enforcing the cleartext attribute: these libraries allow HTTP
even though the policy would prohibit it. We note how these
libraries are used by more than tens of thousands of popular
apps with hundreds of millions of unique installations.
Instead, for what concerns certificate pinning and trusted
anchors, we noticed that nine of the ten libraries do correctly

10. Contact the URL
and retrieve the content

9. User clicked. AD
Show the Network
;\ / full content 2 Forward ™ o Same b 3.;3::(:;;229 4, \r:Vho wa;g;o Brand 1
" Request for the request * LN _ Showan "B, Brand 2
>
ADS anAD ' DR I R — ¥ srands
-—
Library . ! 6 Winner AD 5. Winner AD Brand 4
s Content'to show 0\ A 7.Forward ' o™ _ o o ¢ Content to show:
Application in the WebView of the Sam? the request URL, Images
application
Ads
Server

Figure 2: Ad Ecosystem of individual ad network

honor the policy. Given the difficulty and missing documen-
tation, we were positively surprised by this high adoption rate.
We thus decided to investigate why libraries are enforcing
such a difficult part of the policy and not the easier-to-enforce
cleartext settings. For these libraries, we performed manual
analysis (including source code analysis, when available)
to determine how the policy is actually enforced. We found
that none of these libraries is implementing SSL/TLS-related
operations from scratch nor defining a custom handler for
CAs. Instead, they are all relying on core Android framework
methods to perform SSL operations, which includes handshake
and management of the KeyStores. All these operations are
handled by the Conscrypt [23] package, which provides Java
Secure Socket Extension (JSSE). While this is clearly a positive
news, we find it surprising that these popular network libraries
do not adhere to arguably more critical cleartext settings.

We also found that AndroidAsync, used by thousands of
apps, does not support NSP at all. In fact, we found that the
mere presence of a domain-config node is enough to break
the network library, leading to an exception, and thus making
it essentially incompatible with the NSP. Table 3, in Appendix,
summarizes our findings.

5.4 Disclosure

We disclosed our findings to Google, with an emphasis on the
misconfiguration of the SSL Pinning (which may give a false
sense of security to inexperienced app developers). We also
proposed to extend the AndroidStudio IDE with a linter for the
NSP that checks for these misconfigurations and informs the
developer about the potential risks. Google acknowledged that
this is, in fact, a rather odd configuration. For what concerns
the networking libraries not compliant with the actual NSP
(see Table 3), we have disclosed our findings to the developers.
We are still working towards full bugs fixes.

6 Impact of Advertisement Libraries

Advertisements (ads, in short) play a key role in mobile apps. In
this section, we first provide an overview of how advertisement
libraries (ad libraries) operate and their complexity, and we
then explore the implications for the adoption of the NSP.
Ads are the most important source of income for many app
developers, especially when they can be freely downloaded
from the Play Store. An app can simultaneously embed one or
multiple ad libraries. While the app is running, the ad library re-
trieves the content of the ads from a remote server and it displays
ittothe user. Every time an ad is shown to the user, the developer
earns a revenue. If the user clicks on the ad, the developer then
gets a more substantial revenue. Even though this mechanism is
conceptually simple, the actual implementation details and the
underlying process are far from trivial. We now quickly discuss
the main steps, which are also depicted in Figure 2. First, the
developer embeds a given ad library in her application. Then,
when the app is running, the ad library contacts its backend
server and asks for an ad to be displayed. Depending on the
ad library’s implementation, this first request can reach one or
multiple servers. In case of an individual ad network, the library
contacts a single server, while in case of an ads aggregator the
request is sent to multiple servers. The server then forwards the
request to its ad network, which might be more or less complex.
Within the ad network, the bidding auction starts. Bidding
consists of advertisers (brand) declaring the maximum amount
of money they are willing to pay for each impression (or click)
of their ad. The winner sends the content of the ad back to the
library, and the ad is then displayed in the app, normally within
a WebView. Moreover, if the user clicks on the ad, then the full
enriched content is retrieved from the server of the auction’s
winner (which is related to the specific ad, and not to the ad
library itself). The complexity of the ad ecosystem and the inter-
connection of multiple players—each of which only controls a
portion of the ecosystem—opens interesting questions related
to the NSP. Since the winner of the auction is usually not under

the control of the ad library, the enriched content downloaded
upon auser’s click may be served via HTTP: this aspect makes it
interesting to determine how different ad libraries deal with this
“uncertainty” on the protocol used by the advertiser. Motivated
by these observations, we set out to perform the first systematic
analysis of the NSPs defined by ad libraries.

The rest of the section is organized as follows. First, we
present the dataset we built for the analysis. Then, we analyze
and characterize the NSPs defined by ad libraries, and we show
how several of these libraries push app developers to severely
weaken their policies, oftentimes justifying these requests
with misleading arguments. We then end our discussion with
an in-depth case study. We note that, ideally, it would be
interesting to perform large-scale and automated analysis over
many ad libraries. However, we refrain from performing such
study due to ethical concerns: in fact, automatically visiting
apps with the mere goal of generating ad impressions that
would not be seen by real users (or, even worse, automatically
clicking on these ads) would generate illegitimate revenues
for the app developer (who could be framed as fraudster), and
it would damage all the ads ecosystem’s parties involved.

6.1 Dataset

To perform this investigation, we built a comprehensive and
representative dataset of the most used ad libraries. We choose
the Top 29 ad libraries from AppBrain [10] based on the
ranking “number of applications.” Table 4, in Appendix,
summarizes the statistics about the ad libraries.

6.2 Policy Characterization

We investigated whether a given ad library requires a policy
modification and of which kind. To identify if a library requires
a policy, we start by looking at its official documentation. In
case we do not find any reference to the NSP, we then proceed
by analyzing the source code of the “reference example app,”
which is always provided by the ad library developers to show
how such a library can be integrated. Among the 29 libraries
that we analyzed, we found that /2 of them do require the
developer to modify the policy. (The remaining 17 do not
require any modification, which suggests that their backend
infrastructure is fully compliant with the latest standards and
defaults.) One of these is the Facebook ad library, which only
requires the developer to specify a configuration for a single
domain (see Section 5.2). The other libraries require more
invasive modifications, which we discuss next.

Cleartext. Our first finding is concerning: All the 11 libraries
require the developer to allow cleartext on her application. We
found that MoPub, HyprMx, HeyZap, Pollfish, AppMediation,
and Appodeal do force the developer to completely allow cleart-
ext protocols for all domains. We also found that AdColony, Ver-
izonMedia, Smaato, AerServ, and DuApps push the developer to

adopt the first version of the policy, with similarly negative con-
sequences. These configurations make ineffective any safety net
thata NSP may provide. However, we note that these ad libraries
may be required to ask for this modification since it could be that
a given ad framework does not have enough control over the type
of URLs (HTTP vs. HTTPS) that are served as part of the ads.

Trusted Anchors. We have identified ad libraries defining
a trust-anchors node. Even in this case, the findings are
concerning: Appodeal [20] and HeyZap [21] suggest the
developer to add User KeyStore as trusted, thus providing a
venue to perform MITM attacks. Moreover, none of these
libraries provide any custom CA, nor ask the developer (or
the user) to do so, making this risk completely unnecessary.

Misleading Documentation. We argue that the security reper-
cussions of NSP modifications should be explained and justi-
fied to developers so that they can take informed decisions on
whether to include a given ad library. However, we found how
this “transparency” is not a common practice. After closely
inspecting the documentation of the 11 ad libraries mentioned
above, we found that none of them inform developers of the
possible consequences of allowing cleartext protocols or trust-
ing User KeyStores. Some of these libraries simply inform
the developers that they need to apply their modifications of
the NSP in the name of “usability” and to avoid any faulty be-
havior. Moreover, we identified how Millenial Media, Smaato,
HyprMX, and AerServr simply ask the developer to copy-paste
the provided sample AndroidManifest, without explicitly men-
tioning the fact that such a sample manifest silently specifies
a “usesCleartextTraffic” policy. Even worse, we found how Du
Apps misleadingly justifies the need to allow cleartext traffic
because it is “required for target SDK28.” We believe that the
underlying reason for these problems is that most of these ad li-
braries found themselves in difficulty due to their infrastructure
not being ready to deal with Google’s HTTPS everywhere push.

6.3 Ad Libraries in Apps

Aspreviously discussed, we identified some ad libraries that ask
developers to weaken their security policy and to allow cleartext.
We performed additional experiments that aim at determining
how frequently these ad libraries are used within our dataset
and whether these apps allow cleartext as part of their NSP.
To detect a third-party library within a given app, weuse Lib-
Scout [12], the state of the art static analysis tool for this kind of
task. According to the paper,LibScout can detect the inclusion
of external libraries within apps even when common bytecode
obfuscation techniques are used. LibScout supports two types
of detection: the first one is based on a simple matching with the
package name, while the second one relies on code similarity.
By default, it reports only matches that have a similarity of at
least 70%. For our experiment, we used the same threshold.
Currently, LibScout supports only the Facebook Audience ad
library. We extended it by creating profiles, necessary for the
detection, for all the ad libraries that require the developer to

Table 1: The table summarizes the results of the analysis with
LibScout. Dataset I represents the analysis over 16,324 apps,
while Dataset 2 represents the analysis over the second version
of the dataset composed of 108,542 apps.

#Appswith Adlibrarymatchedby Dataset1 Dataset2
Package Name (PN) 3,189 9,304
Code Similarity (CS) 2,072 5,918
PN A= CS 1,158 3,727
CS A= PN 41 341
PN N CS 2,031 5,577
PN Vv CS 3,230 9,645

modify the NSP to allow cleartext. Then, for each of the apps in
our datasets, we run LibScout for a maximum time of one hour.

We run LibScout on the first dataset of 16,324 apps (which
specify a NSP), and also on the second “fresher” dataset of
108,542 apps. For the first dataset, LibScout was not able to
conclude the analysis in time for 8 apps, while it terminated cor-
rectly for all the apps in the second dataset. In total, the matching
engine was able to identify that 19.7% of the apps belonging
to the first dataset (3,230) do have one of the ad libraries that
requires cleartext. For the second dataset, instead, it identified
8.8% of apps (9,645) containing at least one of the libraries.

Table 1 summarizes the results. Unfortunately, we suspect
that LibScout may miss several matches (that is, it does not
find libraries even if they are included). In fact, Table 1 shows
how the matching results are dominated by the “package name”
heuristic, and how only 41 matches for the first dataset, and 341
for the second, were solely due to the similarity analysis engine
(i.e., all other matches were already covered by the package
name heuristic, hinting that the apps were not obfuscated). We
thus remind the reader that, for the numbers reported in this
section, the accuracy of these numbers is based on the accuracy
of the underlying libraries matching engine, LibScout.

We then proceeded by checking how many of the apps identi-
fiedbyLibScout effectively have aNSPthatallows global clear-
text, as defined by the ad libraries. Table 2 summarizes our find-
ings. We note how for the first dataset, 89% of the apps (2,891)
embedding an ad library do have a NSP that allows cleartext.
However, 11% (339) donotallow it: forthese apps, the ads served
over HTTP will not be displayed and an Exception is thrown. We
also note that even if apps do not use ad libraries, a large portion
of them (83%) stilluse HTTP. Thus, while ad libraries asking de-
velopers to weaken their security policy certainly does not help,
it does not seem to be the only reason app developers stick to in-
secure HTTP connections. For the second dataset, we found that,
among apps that include an ad library, 75.6% of them (7,298)
define a NSP that permits cleartext. The percentage of apps
that allow cleartext decreases to 66.1% when considering apps
that do not include one of the ad libraries we have checked for.

Table 2: The table presents the distribution of the dataset in
terms of inclusion of ad libraries (that ask developers to weaken
their policy) and whether the apps’ NSP allows cleartext.

NSP Dataset 1 Dataset 2
Ads NoAds Ads NoAds
Cleartext 2,891 10,956 7,298 65,455

No Cleartext 339 2,138 2,347 33,442

6.4 Case Study: MoPub

We now present an in-depth analysis of one of the most
prominent ad libraries, MoPub [22]. This library is an
individual ad serving platform used by over 19k applications,
some of which have more than 50M unique installations.
MoPub is one of those libraries that requires an app developer
to allow cleartext for her entire app. For this case study, we set
out to determine whether this library really had no other choice
but to require cleartext on the entire app to properly work. To
shed some light, we aimed at monitoring the network requests
performed by this ad library at run time. We note that a simple
network monitor on the traffic generated by the entire app is
not enough: by just observing network traces, it would be very
challenging to determine which traffic has been generated by
the ad library and which by unrelated components of the app.

Thus, we developed an instrumentation framework that
records all network activities and, moreover, hooks the network
Socket.connect API (by using Frida [38]). This API is the
lowest-level API used for any HTTP or HTTPS connection
and it provides the target domain name and the port. Every
time the API is invoked, we perform a stack trace inspection
to determine which package has originated the call: this setup
allows us to match which component (i.e., library) of the app
initiated the network request.

Due to the ethical concerns mentioned earlier, we limited
ourselves to a very small-scale experiment: we opted to select
and analyze only one representative app, Hunter Assassin [44],
an action game with more than 50M installations. This app
embeds MoPub and specifies a NSP that reflects MoPub’s
documentation. For the experiments, we executed the app
10 times, with each execution lasting 10 minutes. Due to
ethical concerns, we opted to not use automatic Ul stimulation
techniques, but we performed this analysis step manually, by
just simulating the interaction of a “real” user. This approach
allows us to avoid generating excessive traffic and damage the
app developer’s reputation and ad libraries.

During the analysis, our instrumentation framework detected
that the MoPub library initiated connections to 83 unique
domains. (For this experiment, we discarded the domain names
reached by other components of the app.) Surprisingly, for 82
domains (out of 83) the connection was actually established
using HTTPS, the only exception loaded over HTTP being

an image, retrieved from a MoPub server. Even though this
HTTP connection would be blocked by a non-permissive
cleartext policy, we do not believe this is the core reason why
MoPub requires the policy to allow cleartext for the entire app.
According to the MoPub documentation, it requires HTTP
because it may need to serve ads via HTTP—and to do so, it
asks the app developer to weaken the policy for the entire app.

We believe this to be a clear violation of the principle of
least privilege, as the ad library should allow cleartext for its
own connections, without interfering with the rest of the app.
However, we note that this current situation is not solely fault
of the ad library: with the current policy format, it would be
impossible to enumerate all possible domain names that the
ad library should be able to reach since this list is not known
in advance (and since the NSP cannot be changed at run-time).
We identified a conceptual limitation: the current policy format
allows developers to specify policies per domain, but we believe
abetter abstraction for policy specification to be per package. In
an ideal world, the ad library should be able to express that only
the connections that are initiated by the MoPub library itself
shouldbe subjecttouse cleartext, without the need of weakening
the rest of the app. Guided by these insights, we designed and
implemented a drop-in extension to the NSP that would address
this concern. We discuss this proposal in the next section.

7 Network Security Policy Extension

As previously discussed, third-party libraries can significantly
weaken the NSP ofan app,andadlibraries actually often doso. In
some scenarios, however, itis very challenging for ad libraries to
“dobetter.” In fact, the complexity of the ad ecosystem may make
it impossible, for example, to know in advance which domain
names require HTTP connections, thus leaving the ad library
developers to ask to allow cleartext for the entire app. We believe
the current format of the policy is fundamentally limited. The
current policy allows developers to specify different policies at
the granularity level of domain names: we argue that, in some
scenarios (e.g., ad libraries), this is the wrong abstraction level.

This section discusses our proposal for an extension of the
NSP format to allow for the specification of policies ata different
granularity: app components, identified by their package names.

QOur New Extension. The core idea behind the extension is
to allow a developer to bind a specific policy to a specific
package name(s). To this end, we introduce a new XML node,
package-config, which allows developers to specify custom
policies for specific external libraries, without the need to
modify (and negatively affect) the policy of the main app. To
ease the explanation, consider the following concrete example:

<base-config cleartextTrafficPermitted="false" />
<package-config><!--introduced by our extension-->
<package name="com.adlib.unsafe"
cleartextTrafficPermitted="true"/>
</package-config>

This policy specifies that, by default, all HTTP traffic should
be blocked. However, it would allow HTTP connections if they
are initiated by the com.adlib.unsafe ad library. Note how
the ad library can now support occasional HTTP connections
even without knowing the list of domain names a priori and,
more importantly, without affecting the policy of the app.

Implementation. We implemented this new extension by
modifying the isCleartextTrafficPermitted API to
make it aware of the XML policy node. Our modification
performs stack trace inspection to determine which package
name has initiated the call. For each package name appearing
in the stack trace, we then check whether the NSP contains
a custom policy for a specific package name: if yes, we use
that policy. Otherwise, we apply the default. In case the
connection should not be allowed, our implementation raises
aRuntimeError, indicating a policy violation.

Adoption & Backward Compatibility. Our extension can be
trivially adopted by app developers and network libraries. In
fact, since we modify an API that all these libraries already
invoke—and that was a key design choice—they can enjoy
the benefits of our policy without the need to make any
modification. We also note that our extension is fully backward
compatible and it can act as a drop-in replacement of the old
version. In fact, apps and policies that are not “aware” about
our extension are supported exactly the same as before.

Performance Considerations. We implemented our exten-
sion on a Pixel 3A running Android Pie (pie-qpr3-b-release).
Our patch consists of less than 30 lines of code and modifies
only two components of the Android framework (the policy
parser and the isCleartextTrafficPermitted API). We
measured the overhead of our extension with a microbench-
mark: we wrote an app that performs 1,000 HTTP requests
using the OkHttp3 library. We then run the app 100 times, with
and without our modifications, and we compute the difference.
The average execution time of the isCleartextTrafficPer-
mitted API, without our modification, is 0.004 ms with a
standard deviation of 0.006 ms. The average execution time
of the same API with our modification is instead 0.30 ms, with
a standard deviation of 0.094 ms. We believe that the overhead
of our defense mechanism is negligible, especially when
compared to the overhead incurred by network I/O operations.

Limitations. Even though our implementation raises the
security bar of the current Network Security Policy, we
acknowledge that it currently suffers from some limitations.
First, it is important to mention that, since we operate with
the same threat model of the actual NSP, we do not protect the
application against malicious third-party libraries that want
to evade the policy defined by the developer. We note that this
affects the standard NSP as well: in fact, a malicious library can
bypass even the strictest security policy by performing network
connections with its “custom” API or by using native code.

A second limitation relates to the fact that we rely on
the stack trace to identify which component initiated the

network connection. We acknowledge that there may be benign
situations where the stack trace cannot be fully trusted and there
might be the risk of losing the real “caller,” for example, when
using dynamic code loading or threading with worker threads.
A very detailed analysis of the potential problems of using the
stack trace to perform “library compartmentalization” has been
studied in FlexDroid [40]. Even if the current threat model of
FlexDroid is considering malicious libraries, we believe that
their proposal of a secure inter-process stack trace inspection
combined to our defense mechanism might create a full-fledged
implementation to tackle the compartmentalization problem.
To conclude, we currently supportonly the cleartextTraf-
ficPermitted attribute. However, note that some features
already provide a sufficient granularity and do not need to be
sandboxed on a “per-package” basis. Forexample, the certificate
pinning feature already creates a sort of “per-site sandbox.”

8 Related Work

There are several areas of works that are relevant to this paper:
Network Security, the dangerousness of “code reuse,” and
advertisements.

Network Security. A concept similar to the NSP has been
first introduced by Fahl et al. [26]: this work proposed a
completely new approach to handle SSL security, allowing
developers to easily define different SSL configurations and
options, like certificate pinning, just by using a XML policy.
Thus, [26] completely prevents the developer to write any code
responsible of handling the validation and verification of a
given certificate, addressing multiple problems at their roots.

Another group of works focuses on the risks of using
unencrypted connections. Vanrykel et al. [46] study how
apps send unique identifiers over unencrypted connections
exposing the user to privacy threats, while [16,37] show how
several apps are vulnerable to remote code injection due to
code updating procedures over HTTP.

Several works evaluate the adoption of secure connections
among apps: Razaghpanah et al. [39] measured the adoption
of different libraries performing SSL/TLS operations by
fingerprinting their handshake. Oltrogge et al. [34], instead,
measured the adoption of certificate pinning and, by surveying
the developers they discovered that the implementation of
pinning is considered complex and hard to correctly implement.

Other works focus on identifying SSL problems among
apps. One such example is by Fahl et al. [25], which applied
static code analysis and found multiple applications with
SSL/TLS code that is potentially vulnerable to MITM attacks.
Hubbard et al. [30] and Onwuzurike et al. [35], instead, applied
a combination of static and dynamic analysis to identify SSL.
vulnerabilities in popular Android apps.

To conclude, Damjanetal. [15] propose anew defense mecha-
nism to overcome the problem of broken SSL/TLS implementa-
tions named dynamic certificate pinning, while Zhao et al. [51]

discuss several possible counter-measures against SSLStrip.

Code Reuse. Several works highlighted how developers rely
on online platforms like StackOverflow for their development
process. Linares-Vasquez et al. [47] analyzed more than 213k
questions on StackOverflow (related to Android) and built a sys-
tem to paira given snippet of code of StackOverflow witha given
snippet of code within the Android framework. Their work
showed how developers ask questions and change their code
once the behavior of a given API changes. Fischer et al. [27],
instead, measured the proliferation of security-related code
snippets from StackOverflow in Android apps available on
Google Play. [27] showed how more than 200k apps contain
copy-pasted security-related code snippets from StackOverflow.
A similar work, not focused on Android, is from Verdi et al. [48]
in which they investigated security vulnerabilities in C++ code
snippets shared on StackOverflow. They showed how 2,859
GitHub projects are still affected by vulnerabilities introduced
by vulnerable C++ code snippet copied from StackOverflow.

Advertisements. Ads on Android have been evaluated both in
terms of privacy and security. The firstcategory of works studies
ad libraries to identify the privacy implications for the user.
Book et al. [13] tracked the increase in the use of ad libraries
among apps and highlight how the permissions used by these
libraries may pose particularrisks to user privacy. Son etal. [42]
demonstrate how malicious ads can leak the PII of the user.
Stevens et al. [43] instead show how users can be tracked across
ad providers due to the amount of personal information sent
from the ads libraries and expose how these libraries checked
for permissions beyond the required ones to obtain more PII.

The second group of works, instead, focuses mostly on the
security impact of ad libraries and proposes different solutions
to achieve privilege separation for applications and ads.
AdDroid [36] proposes a new advertisement API to separate
privileged advertising functionality from the app. AFrame [50]
and AdSplit [41], instead, propose a different approach to let ad
libraries run in a process separate from that of the application.

9 Conclusion

In this work, we performed the first large-scale analysis of Net-
work Security Policies on the Android ecosystem and we system-
atically explored the adoption of this new defense mechanism by
Android apps. Ouranalysis shows how developers are still allow-
ing full cleartext on their application. We investigated why in-
secure communications are still vastly used by applications and
we determined one of the root causes to be related to the complex
ad ecosystem. Guided by these findings, we designed and im-
plemented a drop-in extension on the actual NSP, which allows
developers to specify a “per-package” policy, so that they can
embed third-party ad libraries without needing to compromise
their app’s security. We hope this work provides useful insights
to speed up Google’s “HTTPS Everywhere on Android” effort.

Acknowledgements

We would like to thank our shepherd Ben Andow for his help
in significantly improving this paper, and all the anonymous
reviewers for their constructive feedback. We are also grateful
to Dario Nisi and Emanuele Cozzi for helping with experiments
and graphs. Last, our thanks obviously also go to Betty Sebright
and her team: “keep pushing” you once said—we did not forget.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

RFC 5280. Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List
(CRL). http://tools.ietf.org/html/rfc5280. 2008,
Accessed: June, 2020.

Heather Adkins. An update on attempted man-in-the-middle
attacks. https://security.googleblog.com/2011/08/
update-on-attempted-man-in-middle.html. 2011,
Accessed: June, 2020.

Klyubin Alex. An Update on Android TLS Adop-
tion. https://security.googleblog.com/2016/04/
protecting-against-unintentional.html. 2016,
Accessed: June, 2020.

HCL Technologies Alon Galili of Aleph Research. Cordova-
Android MiTM Remote Code Execution, CVE-2017-3160.
https://alephsecurity.com/vulns/aleph-2017013.
2017, Accessed: June, 2020.

Official Documentation Android Developers. Android Manifest
application. https://developer.android.com/guide/
topics/manifest/application-element.html?
#usesCleartextTraffic. 2019, Accessed: June, 2020.

Official Documentation Android Developers. = Network

security configuration.

com/training/articles/security-config. 2019,
Accessed: June, 2020.

Official Documentation Android Developers. Net-
workSecurityPolicy isCleartextTrafficPermitted, ~API.

https://developer.android.com/reference/
android/security/NetworkSecurityPolicy.html#
isCleartextTrafficPermitted(). 2016, Accessed: June,
2020.

Platform Documentation Android Developers. Android 8.0
Behavior Changes. https://developer.android.com/
about/versions/oreo/android-8.0-changes. 2020,
Accessed: June, 2020.

AndroidRank. AndroidRank, open android market data since
2011. https://www.androidrank.org. 2011, Accessed:
June, 2020.

AppBrain. AppBrain: Monetize, advertise and analyze Android
apps. Ad Networks. https://www.appbrain.com/stats/
libraries/ad-networks. 2011, Accessed: June, 2020.

https://developer.android.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

AppBrain. AppBrain: Monetize, advertise and an-
alyze Android apps. Network Libraries. https://
Www.appbrain.com/stats/libraries/tag/network/

android-network-1libraries. 2011, Accessed: June, 2020.

Michael Backes, Sven Bugiel, and Erik Derr. Reliable
Third-Party Library Detection in Android and its Security
Applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

Theodore Book, Adam Pridgen, and Dan S. Wallach. Longi-
tudinal Analysis of Android Ad Library Permissions. 2013.

Chad Brubaker. Changes to Trusted Certifi-
cate Authorities in Android Nougat. https:
//android-developers.googleblog.com/2016/
07/changes-to-trusted-certificate.html.
Accessed: June, 2020.

2016,

Damjan Buhov, Markus Huber, Georg Merzdovnik, and
Edgar R. Weippl. Pin it! Improving Android network security
at runtime. In 2016 IFIP Networking Conference (IFIP
Networking) and Workshops, 2016.

Hyunwoo Choi and Yongdae Kim. Large-Scale Analysis of
Remote Code Injection Attacks in Android Apps. 2018.

Catalin Cimpanu. Over 58,000 Android users had stalkerware
installed on their phones last year. https://www.zdnet.
com/article/over-58000-android-users-had\
-stalkerware-installed-on-their\
-phones-1last-year/. 2019, Accessed: June, 2020.

MDM contributors. Web technology for develop-
ers: Strict-Transport-Security. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/

Strict-Transport-Security. 2020, Accessed: June, 2020.

DataTheorem. TrustKit Android: Easy SSL pin-
ning validation and reporting for Android. https:
//github.com/datatheorem/TrustKit-Android. 2016,
Accessed: June, 2020.

Appodeal Android SDK Developer. Appodeal
Android SDK. Android SDK Integration Guide.
https://wiki.appodeal.com/en/android/

2-6-4-android-sdk-integration-guide. 2019,

Accessed: June, 2020.

HeyZap Android SDK Developer. HeyZap Android SDK. http:
//web.archive.org/web/20190615131844/https:
//developers.heyzap.com/docs/android_sdk_
setup_and_requirements. 2019, Accessed: June, 2020.

MoPub SDK Developer. Integrate the MoPub SDK for An-
droid. https://developers.mopub.com/publishers/
android/get-started/. 2020, Accessed: June, 2020.

Android Developers. AOSP Design Architecture: Con-
scrypt. https://source.android.com/devices/
architecture/modular-system/conscrypt. 2020,
Accessed: June, 2020.

http://tools.ietf.org/html/rfc5280
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://alephsecurity.com/vulns/aleph-2017013
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element.html?#usesCleartextTraffic
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://www.androidrank.org
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://www.zdnet.com/article/over-58000-android-users-had\-stalkerware-installed-on-their\-phones-last-year/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://github.com/datatheorem/TrustKit-Android
https://github.com/datatheorem/TrustKit-Android
https://wiki.appodeal.com/en/android/2-6-4-android-sdk-integration-guide
https://wiki.appodeal.com/en/android/2-6-4-android-sdk-integration-guide
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
http://web.archive.org/web/20190615131844/https://developers.heyzap.com/docs/android_sdk_setup_and_requirements
https://developers.mopub.com/publishers/android/get-started/
https://developers.mopub.com/publishers/android/get-started/
https://source.android.com/devices/architecture/modular-system/conscrypt
https://source.android.com/devices/architecture/modular-system/conscrypt

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Android Developers. Official Documentation Net-
workSecurityPolicy, APIL
android.com/reference/android/security/

NetworkSecurityPolicy. 2016, Accessed: June, 2020.

Sascha Fahl, Marian Harbach, Thomas Muders, Matthew
Smith, Lars Baumgértner, and Bernd Freisleben. Why eve and
mallory love android: an analysis of android SSL (in)security.
In CCS ’12,2012.

Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter,
and Matthew Smith. Rethinking SSL development in an
appified world. In CCS ’13,2013.

Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian
Stransky, Yasemin Giilsiim Acar, Michael Backes, and Sascha
Fahl. Stack Overflow Considered Harmful? The Impact of
CopyPaste on Android Application Security. 2017.

Hogben Giles and Idika Nwokedi. Protecting against
unintentional regressions to cleartext traffic in your Android
apps.
com/2019/12/an-update-on-android-tls-adoption.
html. 2019, Accessed: June, 2020.

Leonid Grustniy. What’s wrong with “legal” commer-
cial spyware. https://www.kaspersky.com/blog/
stalkerware-spouseware/26292/. 2019, Accessed: June,
2020.

John Hubbard, Ken Weimer, and Yu Li Chen. A study of SSL
Proxy attacks on Android and iOS mobile applications. 2014.

John Kozyrakis. CVE-2016-2402. https://koz.io/
pinning-cve-2016-2402/. 2016, Accessed: June, 2020.

MWR F-Secure Lab. Paypal Remote Code Execution, CVE-

2013-7201, CVE-2013-7202. https://labs.f-secure.

com/advisories/paypal-remote-code-execution/.
2013, Accessed: June, 2020.

John Leyden. Inside *Operation Black Tulip’: DigiNotar hack
analysed. https://www.theregister.co.uk/2011/09/
06/diginotar_audit_damning_fail/. 2011, Accessed:
June, 2020.

Marten Oltrogge, Yasemin Glilsiim Acar, Sergej Dechand,
Matthew Smith, and Sascha Fahl. To Pin or Not to Pin-Helping
App Developers Bullet Proof Their TLS Connections. In
USENIX Security Symposium, 2015.

Lucky Onwuzurike and Emiliano De Cristofaro. Danger is
my middle name: experimenting with SSL vulnerabilities in
Android apps. In WISEC, 2015.

Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David A.
Wagner. AdDroid: Privilege Separation for Applications and
Advertisers in Android. 2012.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi,
Christopher Kriigel, and Giovanni Vigna. Execute This!
Analyzing Unsafe and Malicious Dynamic Code Loading in
Android Applications. In NDSS, 2014.

https://developer.

https://android-developers.googleblog.

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

Ole André Vadla Ravnés. Dynamic instrumentation toolkit for
developers, reverse-engineers, and security researchers. https:
//frida.re/docs/android/. 2020, Accessed: June, 2020.

Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Johanna Amann, and Philippa
Gill. Studying TLS Usage in Android Apps. In Proceedings
of the Applied Networking Research Workshop, 2018.

Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin,
and Taesoo Kim. FLEXDROID: Enforcing In-App Privilege
Separation in Android. In NDSS, 2016.

Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit:
Separating Smartphone Advertising from Applications. In
USENIX Security Symposium, 2012.

Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What Mobile
Ads Know About Mobile Users. In NDSS, 2016.

Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Lee Erickson,
and Hao Chen. Investigating User Privacy in Android Ad
Libraries. 2012.

Ruby Game Studio. Hunter Assassin. https:
//play.google.com/store/apps/details?id=com.
rubygames.assassin. 2020, Accessed: June, 2020.

Android Security Team. Google Report: Android Security
2014 Year in Review. https://source.android.com/
security/reports/Google_Android_Security_2014_
Report_Final.pdf. 2014, Accessed: June, 2020.

Eline Vanrykel, Gunes Acar, Michael Herrmann, and Claudia
Diaz. Exploiting Unencrypted Mobile Application Traffic for
Surveillance Technical Report. 2017.

Mario Linares Vasquez, Gabriele Bavota, Massimiliano Di
Penta, Rocco Oliveto, and Denys Poshyvanyk. How do API
changes trigger stack overflow discussions? a study on the
Android SDK. In ICPC 2014, 2014.

Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khombh,
Gias Uddin, and Alireza Motlagh. An Empirical Study of C++
Vulnerabilities in Crowd-Sourced Code Examples, 2019.

Ryan Welton. Remote Code Execution as System User on Sam-
sung Phones. https://www.nowsecure.com/blog/2015/
06/16/remote-code-execution-as-system-user\
-on-samsung-phones. 2015, Accessed: June, 2020.

Xiao Zhang, Amit Ahlawat, and Wenliang Du. AFrame:
isolating advertisements from mobile applications in Android.
InACSAC’13,2013.

Yan Zhao, Youxun Lei, Tan Yang, and Yidong Cui. A new strat-
egy to defense against SSLStrip for Android. In 2013 15th IEEE
International Conference on Communication Technology,2013.

https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://developer.android.com/reference/android/security/NetworkSecurityPolicy
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://android-developers.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://koz.io/pinning-cve-2016-2402/
https://koz.io/pinning-cve-2016-2402/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://labs.f-secure.com/advisories/paypal-remote-code-execution/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://frida.re/docs/android/
https://frida.re/docs/android/
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://play.google.com/store/apps/details?id=com.rubygames.assassin
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user\-on-samsung-phones
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user\-on-samsung-phones
https://www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user\-on-samsung-phones

Appendix

Network Libraries Compliance

Table 3: The table summarizes the results of the analysis on network libraries. Foreachlibrary,itfirst presents statistics about the number
of applications using the given library and how many downloads has the topdownloaded application. Then, foreach of the tested feature,
we mark with a v when the library passes all the testcases, X otherwise. The last column represents whether an application is honoring
the entire policy (@), only a subset of features (©) or none of them (O). For URLConnection, statistics are not available on AppBrain.

Top App Certificate Trust

Networking Library # of Apps Downloads Cleartext Pinning Anchors Compliant
Retrofit > 104k 1B ()
Volley > 66k 5B [
OkHttp > 39k 5B ()
AndroidAsyncHTTP > 22k 100 M X O
AndroidAsync > 7k 100 M X X X (@)
FastAndroidNetworking >3k 100 M [
HttpClientAndroid ~ 1,000 100 M X ©
BasicHttpClient ~ 1,000 100 M o
Robospice ~ 1,000 10M)
URLConnection N/A N/A [

A Complete Network Security Policy

<network-security-config>
<domain-config
cleartextTrafficPermitted="false">
<domain includeSubdomains="false">
android.com</domain>
<pin-set expiration="2020-12-12">
<pin digest="SHA-256">YZPgTZ+woNCCCIW3LH2CxQeLzB/1m42QcCTBSdgayjs=
</pin>
</pin-set>
</domain-config>
<debug-overrides>
<trust-anchors>
<certificates src="system"/>
<certificates src="@raw/custom_cert"/>
</trust-anchors>
</debug-overrides>
</network-security-config>

Figure 3: The policy lacks a base-config. Thus, its configuration changes according to the API level. For example, if the app
targets the API level 28, the policy will deny all cleartext protocols and use only the system CAs. The policy also defines a different
security mechanism for the android.com domain (but not for its subdomains). In particular, the policy specifies that the application
should reach the domain only via HTTPS and only with a specific certificate (i.e., it implements certificate pinning). The policy
also defines an expiration date for this certificate. Moreover, when the application is compiled in debug mode, network connections
can be trusted if they are signed with CAs defined within the system KeyStore or with a custom, hardcoded CA “custom_cert”.
Also, no certificate pinning is enforced.

Example of Real Network Security Policy

<domain-config>

<domain>example.com</domain>

<pin-set>

<pin digest="SHA-256">HASH</pin>

</pin-set>
</domain-config>

<domain-config>

<domain>valid_domain</domain>

<pin-set>

<pin digest="SHA-256">BBBBB..BBBBBB</pin>

</pin-set>

</domain-config>

(b)

Figure 4: These policies represent two real cases found on our dataset. On the policy (a), it is possible to see how the developer
enforced the certificate pinning on the example.com domain, while in the policy (b) the developer enforced certificate pinning
with a wrong certificate formed of only “B.”

Advertisement Libraries

Table 4: The table summarizes the results of the analysis on advertisement libraries. For each library, it presents statistics about
the number of applications using the given library, how many downloads has the top downloaded application, and if it requires
a modification of the NSP. For AppMediation, the statistics are not available anymore: however, the required policy can be found
athttps://github.com/appmediation/Documentation/wiki/Android-Project-Setup

Ad Library # of Apps Top Apps Downloads Requires NSP Modification
AdMob > 464k 1B

Facebook Audience Network > 96k 500M v
Unity > 67k 50M

AppLovin > 34k 100M

Chartboost > 30k 1B

Startapp > 20k 100M

AppsFlyer > 29k 500M

AdColony > 24k 100M v
Vungle > 20k 100M

MoPub > 19k 1B v
Ironsource > 19k 50M

Amazon Mobile Ads > 13k 500M

Tapjoy > 11k 100M

InMobi > 11k 100M

Pollfish > 9k 10M v
AppNext > 8k 100M

Adjust > 8k 1B

HeyZap > 7k 100M v
Smaato > 4k 100M v
Fyber >4k 100M

Millennial Media > 3k 500M v
MyTarget >3k 100M

Appodeal >3k 50M v
Kochava > 2k 100M

AerServ > 2k 100M v
Tenjin ~ 1,000 100M

HyprMX ~ 1,000 100M v
DU Ad ~ 500 100M v
AppMediation N/A N/A v

https://github.com/appmediation/Documentation/wiki/Android-Project-Setup

	Introduction
	Network Communication Insecurity
	HTTP
	HTTPS and Certificate Pinning
	User Certificates

	Network Security Policy
	Policy Specification
	Towards HTTPS Everywhere
	TrustKit

	Policy Weaknesses
	Policy Adoption
	Dataset
	Dataset Exploration & Weaknesses
	Android Networking Libraries Adoption
	Disclosure

	Impact of Advertisement Libraries
	Dataset
	Policy Characterization
	Ad Libraries in Apps
	Case Study: MoPub

	Network Security Policy Extension
	Related Work
	Conclusion

