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Abstract

The ability to accurately compute the similarity between two
pieces of binary code plays an important role in a wide range
of different problems. Several research communities such as
security, programming language analysis, and machine learn-
ing, have been working on this topic for more than five years,
with hundreds of papers published on the subject. One would
expect that, by now, it would be possible to answer a number of
research questions that go beyond very specific techniques pre-
sented in papers, but that generalize to the entire research field.
Unfortunately, this topic is affected by a number of challenges,
ranging from reproducibility issues to opaqueness of research
results, which hinders meaningful and effective progress.

In this paper, we set out to perform the first measurement
study on the state of the art of this research area. We begin by
systematizing the existing body of research. We then identify
a number of relevant approaches, which are representative of a
wide range of solutions recently proposed by three different
research communities. We re-implemented these approaches
and created a new dataset (with binaries compiled with differ-
ent compilers, optimizations settings, and for three different
architectures), which enabled us to perform a fair and mean-
ingful comparison. This effort allowed us to answer a number
of research questions that go beyond what could be inferred
by reading the individual research papers. By releasing our
entire modular framework and our datasets (with associated
documentation), we also hope to inspire future work in this
interesting research area.

1 Introduction

Binary function similarity is the problem of taking as input
the binary representation of a pair of functions, and producing
as output a numeric value that captures the “similarity”
between them. This problem is very challenging to solve in the
general case. In fact, software is often compiled with different
toolchains, different compiler optimizations and flags, and,
in some scenarios like IoT devices, software is compiled
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to different architectures, making trivial binary similarity
approaches ineffective.

Binary function similarity plays a crucial role in different
systems security research fields, as a number of research
problems require measuring function similarity as a core
building block. For example, reverse engineers often deal
with stripped binaries that have been statically linked (thus
without symbols), and binary code similarity approaches can
be used to match an unknown function to (labeled) functions
in a previously generated database, saving numerous hours
of reverse engineering effort. Binary similarity is also crucial
to effectively detect and patch vulnerabilities in third-party
libraries. In this case, given a vulnerable function, similarity
techniques help finding occurrences of that same function in
one or more binaries, allowing for a much quicker identifica-
tion and patching of problematic bugs. As additional examples,
this problem is also relevant for binary diffing and patch
analysis, in which two binaries with multiple functions must be
compared against each other, and in software lineage analysis
or malware clustering, in which the analysts is interested in pin-
pointing common functions across different malware samples
and to group them together according to their similarity.

The importance and relevance of this problem is reflected
by the available literature: researchers in many different dis-
ciplines, including systems security, programming languages,
and machine learning, have published an astonishing number
of papers (often in their respective top venues) to propose new
approaches for binary similarity. This competition has resulted
in a very rapid evolution of the existing techniques, and in the
progressive development and refinement of multiple solutions.

One would expect that this significant body of work would
be sufficient to answer a number of important research
questions. For example: How do different approaches compare
when evaluated with the same dataset and by using the
same metrics? Which are the main contributions of the
novel machine-learning solutions compared to simpler fuzzy
hashing approaches? Which is the role of different sets of
features? Do different approaches work better at different
tasks? Is the cross-architecture comparison more difficult



to solve than working on a single architecture? Is there any
specific line of research that looks more promising as a future
direction for designing new techniques? Unfortunately, we
found that the current body of published research is unable to
answer these questions, due to a number of major challenges.

Challenges. The first challenge is the current inability to nei-
ther reproduce nor replicate previous results. While this is
sadly a common problem in the security field, the area of bi-
nary similarity is a particularly good example of this issue.
Only 12 out of the 61 solutions reported in the survey by Haq
et al. [27] released their tool to other researchers. And even
when the artifacts are available, they are often incorrect (i.e.,
they do not implement the exact same solution described in the
paper), incomplete (i.e., important components, for instance
for features extraction, are missing), or the code might not even
run on datasets different from the one used by its authors. Since
re-implementing previous techniques is very complex and ex-
tremely time consuming, each solution is typically compared
with only a couple of previous techniques that may sometimes
not even be designed to solve the same problem (e.g., code
search vs. binary diffing), and in some extreme cases the com-
parison is done only against a previous paper from the same
authors. The lack of reproducibility is even more relevant for
machine-learning approaches, where implementation choices,
hyperparameters, and training and testing methodologies
strongly influence the results. It is also often unclear whether
the released models should be used as-is or whether retraining
is necessary to reproduce similar results on different datasets.

The second challenge is that the evaluation results are
often opaque. Different solutions are typically customized for
slightly different objectives (e.g., searching for a vulnerability
vs. finding similar malware samples), in different settings (e.g.,
cross-compiler vs. cross-architecture), by using a different
concept of similarity (same code vs. same semantic), and op-
erating at different granularities (e.g., code snippets vs. entire
functions). The experiments are also performed on datasets
of different size and nature (e.g., firmwares vs. command-line
utilities), and the results are reported by using different metrics
(e.g., ROC curves vs. top-n vs. MRR10). Therefore, even the
most basic figures reported in each paper are not directly com-
parable. Thus, when results outperform previous works, it is
unclear whether it happens only in the selected scenario or also
in other use cases. To make things worse, papers often omit
details on how functions are filtered out and how positive and
negative pairs are selected for training, making it difficult to
reproduce the pipeline faithfully even with the same binaries.

Note also that these works are often built on top of non-trivial
pipelines, e.g., toolchains to determine function boundaries,
disassemble the code, and extract the control-flow graph. The
few available approaches use different toolchains and they
are built on different pipelines. It is thus very challenging to
determine how much the reliability of the initial “non-relevant”
stages of the pipeline actually affects the reliability of the
overall approach. In other words, it is often unclear whether the

superior results of a given approach are related to the contribu-
tions presented as novel or are instead related to other factors.

The combined effect of the first two challenges resulted in
a field that is extremely fragmented, where dozens of tech-
niques exist but without a clear understanding of what works
(or does not) in which settings. This brings us to the last chal-
lenge: the difficulty of understanding which direction binary
similarity research is heading, and why. Each new solution
adopts a more complex technique, or a new combination of
multiple techniques, and it is difficult to tell whether this is
driven by actual limitations of the simpler approaches or by
the need to convince the reviewers about the novelty of each
work. This fragmentation has often led to parallel and dis-
Jjoint lines of research, where everyone is claiming to have the
best solution. This fragmentation has also led to papers with
sub-optimal evaluations and approaches. For example, papers
that are strong on the program analysis aspect may lack the
application of state-of-the-art machine-learning techniques.
Solutions based on machine learning are the current trend, but
they often blindly apply techniques from other fields, making it
harder to judge the overall progress and innovation in the area.

Contributions. In this paper, we perform the first systematic
measurement in this area of research. We first explore existing
research and group each solution based on the adopted ap-
proach, with a particular focus on recent successful techniques
based on machine learning. We then select, compare, and imple-
ment the ten most representative approaches and their possible
variants. These approaches are representative of a wide range
of trends and span across three different research communities:
the computer security, the programming language analysis, and
the machine-learning communities. To make our comparisons
meaningful, our implementations are built on top of a common
framework (e.g., we extract the raw features using the same un-
derlying implementation, while previous works rely on differ-
ent toolchains). If the original implementation is available, we
include the core model implementation in a common codebase
for training and testing and we extend the support for missing
architectures and bitnesses. Finally, we leverage parallel pro-
gramming and efficient data encoding techniques to avoid bot-
tlenecks that could negatively affect the model performances.

By re-implementing various approaches—and not nec-
essarily the “papers”— we isolate existing “primitives” and
evaluate them when used independently or combined with
each other, to gain insights and pinpoint important factors that
are hidden in the complexity of previous works, and to answer
various open research questions. To make this evaluation
effort more comparable, we also propose a new dataset that
we use as a common benchmark with varying aspects such
as compiler family, optimizations, and architectures.

Note that our research focuses on evaluating the main
techniques proposed to date without trying to reproduce the
exact results reported in the corresponding papers. While some
of our implementations are derived from the code released by
the authors when available, others have been developed from



scratch with the goal of having a single codebase and pipeline
that can isolate the technique from the rest of factors that can
influence the result.

Our evaluation highlights several interesting insights. For
example, we found that while simple approaches (e.g., fuzzy
hashing) work well for simple settings, they fail when dealing
with more complex scenarios (such as cross-architecture
datasets, or datasets for which multiple variables change at
the same time). Among the machine-learning models, those
based on Graph Neural Network achieved the best results in
almost all the tasks, and are among the fastest when comparing
the inference time. Another interesting finding is that many
recently published papers all have very similar accuracy
when tested on the same dataset, despite several claims of
improvement over the state of the art.

While we do not claim that our code or dataset is better
or more representative than previous works, we release our
modular framework, the re-implementation of all the selected
approaches, the full dataset, and detailed instructions on how
to recreate it and tweak it.' By allowing the community to
experiment with the individual components and to directly
compare one against each other, we hope to encourage and
ease the effort of future researchers that are interested in
approaching this active research area.

2 The Binary Function Similarity Problem

In its simplest form, binary function similarity aims at
computing a numeric value that captures the “similarity”
between a pair of functions in their binary representation,
raw bytes (i.e., machine code) constituting the body of the
function, as produced by a compiler. Note that, while in this
paper we focus on approaches that use functions as units of
code, researchers have also studied techniques that focus on
lower-level abstractions (e.g., basic blocks) or higher-level
ones (e.g., whole programs). The term similarity has instead
various interpretations, depending on the context. For this
paper, we consider two functions as “similar” if they have been
compiled from the same source code, independently from the
compiler, its version, its compilation flags, or even the archi-
tecture the function has been compiled to (e.g., x86, ARM).
Thus, according to our definition, two “similar” functions may
have vastly different binary representations — and this is what
makes this research problem interesting and challenging.
Binary function similarity has been studied in more than
a hundred papers. To complicate the landscape, most of the
existing approaches cannot be mapped to a single category
of techniques, as they are often built on top of different com-
ponents. Therefore, in this section we focus on the different
building blocks that these approaches are composed of, by

TAll our artifacts and additional technical information are available at
https://github.com/Cisco-Talos/binary_function_similarity,
referred throughout the paper as [47].

looking first at the techniques to compute similarity, and then
at the types of input data that these approaches can make use of.

2.1 Measuring Function Similarity

Direct vs. indirect comparison. We can group the techniques
to measure function similarity in two main categories. The
first class of solutions implement a direct comparison of pairs
of functions, either by considering raw input data or by imple-
menting some sort of feature extraction. These solutions often
need to learn that two seemingly-unrelated values can repre-
sent similar functions, or vice-versa that close values do not
necessarily represent something similar. This is the case when
the features extracted from binary functions cannot be directly
compared by using basic similarity metrics as they may not
be represented in a linear space, or may not have an equivalent
weight on the similarity score. Therefore, researchers have
proposed to use machine-learning models in order to determine
if two functions are similar given a set of extracted features as
input. There are several approaches that implement this type of
similarity by leveraging Bayesian networks [2], convolutional
neural networks [44], Graph Matching Networks (GMN) [40],
regular feed-forward neural networks [67], or combinations
of them [37]. In these cases, the model is used to output a
similarity score between a pair of functions.

To find similar functions, these approaches need to search
over the entire dataset and compare the features of the queried
function against every entry in the dataset, which is not a
scalable solution. For this reason, many approaches implement
indexing strategies to pre-filter potentially similar candidates
with techniques such as tree-based data structures [55, 68], lo-
cality sensitive hashing [15,22,32,56,61] (approximate nearest
neighbor search), bloom filters [35], custom pre-filters based
on more simple numeric data [6,20], clustering techniques [81],
or even distributed search approaches such as map-reduce [15].

The second class of solutions implement indirect compar-
ison techniques. These approaches map the input features to
a “condensed” lower-dimensional representation that can be
easily compared to one another using a distance measure, like
the euclidean or the cosine distance. These solutions allow
efficient one-to-many comparisons. For instance, if a new
function needs to be compared against an entire dataset, one
can first map each function in the repository to its respective
low-dimension representation (this is a one-off operation),
then perform the same operation on the new function, and
finally compare these representations by using efficient
techniques such as approximate nearest-neighbors.

Fuzzy hashes and embeddings. A popular example of
low-dimensional representation is a fuzzy hash. Fuzzy hashes
are produced by algorithms that differ from traditional
cryptographic hashes because they are intentionally designed
to map similar input values to similar hashes. Pagani et al. [58]
studied the limitations of conventional fuzzy/locality sensitive
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hashes computed over raw executables, concluding that small
variations in the raw bytes of the input can significantly affect
the generated hash. However, even if vanilla fuzzy hashes may
not be suitable for function similarity, some approaches (like
FunctionSimSearch [18]) have proposed more specialized
hashing techniques to compare two functions.

Another popular form of low-dimensional representation re-
lies on embeddings. The term, popular in the machine-learning
community, refers to a low-dimensional space where semanti-
cally similar inputs are mapped to points that are close to each
other, regardless of how different the inputs looked in their
original representation. The goal of the machine-learning mod-
els is to learn how to produce embeddings that maximize the
similarity among similar functions and minimize it for differ-
ent functions. In the literature we can identify two main types
of embeddings: those that try to summarize the code of each
function and those that try to summarize their graph structure.

Code embeddings. Numerous researchers tried to adapt exist-
ing Natural Language Processing (NLP) techniques to tackle
the binary function similarity problem by treating assembly
code as text. These solutions process streams of tokens (e.g., in-
struction, mnemonic, operand, normalized instruction) and out-
put one embedding per code block, one embedding per instruc-
tion, or both. A first class of approaches (e.g., Asm2Vec [14]
and [64]) are based on word2vec [52,53], a well-known tech-
nique in the NLP field. Although these models are not de-
signed for cross-architecture embedding generation, they can
be trained on different instruction sets at the same time, learn-
ing the syntax of different languages (but without being able
to map the semantics across languages) or they can be applied
on top of an intermediate language. A second line of solu-
tions is based on seq2seq encoder-decoder models [69], which
allows to map the semantics from different architectures to
the same embedding space, thus learning cross-architecture
similarity [49, 80, 82]. A third type of models builds on top
of BERT [12], the state-of-the-art pre-training model in NLP
based on the transformer [71]. For instance, OrderMatters [78]
uses the BERT model pre-trained on four tasks to generate ba-
sic block embeddings, while Trex [60] uses a hierarchical trans-
former and the Masked-Language-Modeling task to learn ap-
proximate program execution semantics and then transfer the
learned knowledge to identify semantically similar functions.
Assembly code embeddings are usually affected by the num-
ber of different instructions they can deal with (the so-called
out-of-vocabulary problem (OOV)), and by the maximum num-
ber of instructions that can be provided as input to the model.
As aresult, certain approaches compute instruction-level em-
beddings [14, 16, 64], basic block embeddings [16, 78, 80, 82],
or function-level embeddings [14, 49, 60]. Instruction or
basic block embeddings are sometimes leveraged to compute
function similarity by using other algorithms such as Longest
Common Subsequence [82], or they are used as part of more
complex models as detailed in the following category.

Graph embeddings. Another line of research builds on
machine-learning approaches that compute embeddings
for graphs. These are very suitable to capture features
based on the function control-flow graphs, which are
cross-architecture by nature. These embeddings can be
generated by custom algorithms [24, 44] or by more complex
machine-learning techniques, such as Graph Neural Network
(GNN) [25, 40, 45, 76, 78, 79]. Some recent approaches
from the machine-learning community propose variations of
GNN, such as the GMN. These variations are able to produce
embeddings comparable in a vector space [40, 43], with the
particularity that these embeddings encode information from
the two graphs provided as input to the model.

Graph embedding approaches also often encode informa-
tion from each basic block in their corresponding node of
the graph to add more expressiveness. For instance, some
solutions compute a set of attributes for each node, thus leading
to Attributed Control-Flow Graphs (ACFG), which can either
be manually engineered [24, 76] or automatically learned
in an unsupervised way [45]. Other authors leverage other
embedding computation layers using some of the techniques
discussed earlier (e.g., at basic block level [45,78,79]).

2.2 Function Representations

Binary functions are essentially streams of bytes correspond-
ing to architecture-specific machine code and data. Starting
from this raw input, researchers have used a number of ways
to extract higher-level information that could be used to tell
whether two functions originate from the same source code.
The list, ordered by increasing level of abstraction, includes
the following pieces of information.

Raw bytes. Some solutions directly use the raw binary
information as a starting point for a similarity measure (e.g.,
Catalog1 [74]) or combine raw bytes with other information
obtained from the control-flow graph (CFG) or the call graph
(CG) [44].

Assembly. Assembly instructions, as obtained by a disassem-
bler, can be useful when operations can be encoded in many
different ways depending on the instruction size or its operands
(e.g., in x86/64 architecture, a mov instruction can be encoded
by using a number of different opcode bytes [33]). Approaches
such as Asm2Vec [14] and Trex [60] benefit from this level of
abstraction by using disassembled instructions as input, while
others compute additional metrics such as “the number of arith-
metic assembly instructions in a given function” [24,25,76].

Normalized assembly. Assembly code often encodes
constant values (e.g., immediate operands and absolute or
relative addresses), which result in a very high number of
potential combinations of operations and operands. Assembly
normalization is used in [22, 45, 49, 64, 80, 82] to abstract
away some of this variability, reduce the vocabulary size, and



converge all the possible variations of the same operation into
a single representation.

Intermediate representations. Some approaches work on an
even higher abstraction level by lifting the binary represen-
tation to an intermediate representation (IR). The use of an IR
brings several advantages: (i) it can unify the representation of
semantically equivalent but syntactically different instructions,
(ii) it potentially abstracts away non-relevant artifacts of
different architectures, and (iii) it allows to apply program
analysis techniques to simplify (and converge) certain code
constructs. Existing works have employed a number of
different IRs, such as LLVM [10, 23,25], VEX [6, 10, 30, 67],
and IDA microcode [78,79].

Structure. Numerous approaches try to capture the internal
structure of a given function, or the role that a function
plays within the overall program. To capture a function’s
internal structure, many approaches [3, 18, 32, 56] extract
the (intra-procedural) Control-Flow Graph (CFG). Some
enrich the CFG with data obtained from the basic blocks, i.e.,
Attributed Control-Flow Graph (ACFG) [18, 20, 24, 25, 40,
51,76,78,79, 81], or other types of graphs or information
obtained from the function (e.g., register flow graph [1]) or its
context within the binary (call graph [44, 68]). Finally, some
techniques just benefit from the structure provided by the CFG
to compute alternative features — such as tracelets (sequences
of consecutive basic blocks in the CFG [11, 56]).

Data flow analysis. The implementation of an arithmetic
expression at the assembly level may employ different forms
to implement the same semantics. To deal with these scenarios,
previous works proposed to first compute program slices
based on data-flow dependencies, and to then normalize and
use them as features to capture a function’s behavior [9, 67].
Other papers, such as Vulseeker [25], employ data flow edges
between blocks as an additional feature.

Dynamic analysis. Some approaches rely on dynamic analy-
sis [19], e.g., by executing pairs of functions and extracting fea-
tures from the relationship between the inputs and outputs [30,
62]. Other approaches simply extract semantic features derived
from full or partial execution traces [29, 34,39, 54, 72], while
other leverage emulation [77] or hybrid [31, 60] techniques.

Symbolic execution and analysis. As opposed to concrete
dynamic execution, some approaches rely on symbolic
execution to fully capture the behavior of the function under
analysis and to determine the relationship between its inputs
and its outputs, under all possible paths [6,46,55].

3 Selected Approaches

One of the main contributions of our work is to provide a
reference implementation for a number of key approaches and
to compare them by performing experiments on a common

and comprehensive dataset. Ideally, one would evaluate as
many approaches as possible, but clearly it is not feasible
to re-implement them all. It is also important to understand
that, while there are hundreds of papers on the topic, many
of them present small variations of the same techniques and
the number of novel solutions is significantly lower.

In this section we first discuss our selection criteria, and
we then introduce the set of techniques we implemented and
evaluated.

3.1 Selection Criteria

Scalability and real-world applicability. We are interested
in approaches that have the potential to scale to large datasets
and that can be applicable to real-world use cases. Thus,
we do not evaluate approaches that are inherently slow and
only focus on direct comparisons, such as the ones based on
dynamic analysis, symbolic execution, or high-complexity
graph-related algorithms.

Focus on representative approaches and not on specific
papers. There are many research works that propose just small
variations of the same approach — for example by reusing
previous techniques while slightly changing which features
are used. This often results in a similar overall accuracy, which
makes them less interesting for our comparison.

Cover different communities. The research contributions
on the problem of binary function similarity come from
different research communities and from both academia
and industry. Unfortunately, it is often the case that research
papers in a given community are only evaluated against
proposals from the same community or, at times, only
against previous works from the same authors. Thus, for our
evaluation, we wanted to include representative research from
the systems security, the programming language analysis, and
the machine-learning communities. For completeness, we also
considered approaches proposed by industry as well.

Prioritize latest trends. While the first contributions in this
research field date back to more than a decade ago, there has
been a recent surge in interest. Moreover, the majority of these
recent publications employ, in one way or another, techniques
based on machine learning. These techniques, in turn, have
been reported to outperform all previous approaches. Some
researchers have suggested that basic approaches work as well
as machine-learning techniques, but our evaluation shows that
this is the case only when considering simple evaluation scenar-
ios. Thus, while we do consider various types of approaches,
we do prioritize these latest, more promising, research trends.

3.2 Selected Approaches

In Section 2 we have presented the types of input data that
researchers have extracted over the years as well as the
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Figure 1: Function Similarity Systematization

possible methods to compute function similarity. However,
only a subset of the many papers published over the last decade
meet the criteria described above. Based on our analysis, we
identified 30 techniques, represented in Figure 1, out of which
we then selected ten representative solutions for our study.

The graph on the left of Figure | displays the approaches
clustered according to their respective research group. These
groups come from both academia and industry — with both
Google and Tencent being very active in this area. The edges
represent the other solutions to which each paper compares
its results with. For instance, the arrow between Gemini and
Genius means that the results of Gemini were compared by
the authors with the results previously obtained by Genius
(both from the same group). The right portion of Figure |
shows instead the timeline of publication on the Y axis, and
the different types of input data on the X axis. The approaches
are then clustered in three main groups based on the different
ways of computing the similarity, i.e., fuzzy hashes, graph
embeddings, and code embeddings.

Both figures make use of tags (in brackets) to identify the
community ( [S] security, [PL] programming languages, [ML]
machine learning, and [SE] software engineering). We also use
the [Mono] and [Cross] tags to represent whether the proposed
approaches focus on, respectively, mono- or cross-architecture
scenarios.

Even if the graph in Figure | is not comprehensive and
only shows the papers we selected, it depicts once again how
several papers compare only against a limited set of previous
approaches. There are also other interesting messages we can
extract from these plots. First, the binary diffing tools grouped
in the middle box [13,16,83] have all been designed for a direct
comparison of two binaries (e.g., they use the call graph) and
they are all mono-architecture. Nevertheless, several papers
that proposed cross-architecture and function similarity solu-
tions compare their results against these tools. This is clearly an
issue that can lead to wrong conclusions and shows some flaws

in the experiments and inappropriate evaluation strategies.

Second, the graph shows that the different communities
are often quite hermetic and they rarely compare with papers
from other fields. This is a clear limitation for advancing
function similarity research and we hope this paper can foster
collaboration among the different fields. Last, we can identify
seminal papers such as Gemini [76] and discovRE [20] that
have been re-implemented and tested extensively in other
studies. These works have clearly inspired other researchers
to improve the state of the art.

The timeline picture on the right shows a clear trend: the
complexity of the solutions and the use of machine learning
grew over time. We used this information and the relationships
depicted in the picture to select fen state-of-the-art solutions
that are scalable, representative, and recent. At the same
time, we tried to maximize the variance between the research
communities.

For instance, we selected Gemini [76] but not Genius and
discovRE because Gemini outperformed Genius [24] in all its
experiments and Genius outperformed discovRE [20]. There-
fore, we are confident that Gemini also outperforms discovRE.
Based on similar considerations we selected Asm2Vec [14],
which demonstrated a better accuracy than Bingo [6]. We also
retained some works that at first sight may seem outdated (e.g.,
Catalog1 [74]) because we believe they are representative to
study the evolution of this field, have interesting results, and
reflect our selection criteria. Finally, in some cases we may
have selected more than one work in a given category. This can
happen when there are concurrent works and it is not clear from
the literature which one performs better. In the remaining part
of this section we briefly describe the ten selected solutions.

Bytes fuzzy hashing: Catalogl. Catalogl [74] is a fuzzy
hashing approach based on the MinHash Locality Sensitive
Hashing [4]. The algorithm takes as input the function bytes
and produces a fixed length signature, which is a promising
way to compare functions from the same architecture.



This work is from a non-academic community, and it is
implemented in an IDA plugin.

CFG fuzzy hashing: FunctionSimSearch. FunctionSim-
Search [18] uses the SimHash algorithm [7] to compute a
fuzzy hash that combines graphlets (i.e., small connected,
non-isomorphic, induced subgraphs) extracted from the CFG,
mnemonics, and immediate values from the assembly code.
The approach is potentially cross-architecture because of the
CFG-based features. This tool is developed by a researcher
from the industry.

Attributed CFG and GNN: Gemini. Gemini [76] uses a
GNN (Structure2vec [8]) to compute a function embedding
starting from the function ACFG (i.e., a control-flow graph with
basic-block level attributes). This approach marks a milestone,
because it is the first to leverage GNN with a Siamese architec-
ture [5] to learn function similarity. This is clearly an evolution
compared to basic ACFG-based solutions (Genius [24]) and it
is more efficient than other approaches that leverage CFG data
such as Bingo [6], Binsign [56], Kam1no [15], or Tracy [11].

Attributed CFG, GNN, and GMN: Li et al. 2019. The
approach presented in [40] is proposed by researchers from the
industry (DeepMind and Google) from the machine-learning
community and it presents a novel graph matching model to
compute the similarity between pairs of graphs. The authors
explored function similarity as one of the practical use cases.
This approach proposes two cutting-edge models from the
machine-learning community that had not yet been studied
by system security researchers. Moreover, the paper shows
promising results.

IR, data flow analysis and neural network: Zeek. Zeck [67]
performs dataflow analysis (slicing) on the lifted code (VEX
IR) at the basic-block level and computes strands. Then,
a two-layer fully-connected neural network is trained to
learn the cross-architecture similarity task. This approach
is the most advanced proposal combining intermediate
representations, data flow analysis, and machine learning. This
work outperforms previous research from the same authors.

Assembly code embedding: Asm2Vec. The Asm2Vec [14]
NLP model derives from the PV-DM variant of para-
graph2vec [38], an extension of the original word2vec [53]
model. Asm2Vec introduces a finer instruction-level splitting
and embedding construction in order to overcome the limita-
tions of the out-of-vocabulary (OOV) problem with assembly
instructions. This approach is fully unsupervised, and achieves
state-of-the-art results in the mono-architecture experiments.

Assembly code embedding and self-attentive encoder:
SAFE. SAFE [49] uses the self-attentive sentence encoder
from Lin et al. [42] to learn cross-architecture function em-
beddings. This approach is representative of the NLP encoders
from the seq2seq model, and, in contrast to Asm2Vec, it was
specifically designed to learn cross-architecture similarity.

Assembly code embedding, CFG and GNN: Massarelli et
al., 2019. Massarelli et al. [45] uses the same Structure2vec
GNN of Gemini [76], but it changes the block-level features,
switching from manually engineered features to unsupervised
ones. This approach is interesting because it is an evolution
of Gemini and it combines the advantages of instruction-level
embeddings, basic-block encoder, and GNN.

CodeCMR/BinaryAl. The model presented in [79] powers
the BinaryAl framework [70] for the binary source code
matching at function-level. We only focus on the part that
handles the function in binary format. The model combines
intermediate representation with an NLP encoder to get
basic-block embeddings and a GNN to obtain the graph
embedding. Two LSTMs encode strings and integer data from
the function. The function embedding is the concatenation
of the three, and the binary model is trained end-to-end. We
note that this work from Tencent is a follow-up of an authors’
previous work [78] and the authors, when contacted, explained
how the new model is more accurate.

Trex. Trex [60] is a recent work based on a hierarchical
transformer and micro-traces. This paper brings a dynamic
component that extracts function traces and that is fundamental
to learn the semantics of the functions. The authors pretrain the
ML model on these traces and transfer the learned knowledge
to match semantically similar functions. The matching phase
is based exclusively on static features while the emulation
to generate the micro-traces is required only during the pre-
training. This cross-architecture solution is built on top of the
transformer, the state-of-the-art deep learning model in NLP.

4 Evaluation

4.1 Implementation

One of the goals of this study is to perform a fair compar-
ison among the different approaches. For this reason, we
implemented each phase of the evaluation in an uniform way,
including the binary analysis, the feature extraction, and the
machine-learning implementations. In this way, it is possible
to create a common ground to perform a meaningful and fair
comparison of the different methodologies.

For the binary analysis phase we used IDA Pro 7.3 [28],
while for the feature extraction we relied on a set of Python
scripts using the IDA Pro APIs, Capstone [63], and Net-
workX [26]. We implemented all the neural network models
in Tensorflow 1.14, with the only exception of Trex [60],
which was built on top of Fairseq [57], a sequence modeling
toolkit for PyTorch. Finally, we used Gensim 3.8 [65]
to implement Asm2Vec [14] and to run the instruction
embedding models [45,49].

In several cases we were able to obtain at least a portion of
the original code base of the underlying research works [17,21,
48,50,59,74,75]. Unfortunately, even when part of the code



was available, it was often tailored to the dataset the authors
used in their paper, and we had to put a substantial implementa-
tion effort to make it execute correctly on a different set of test
cases. During this process, we adopted a uniform implemen-
tation to minimize evaluation differences and we introduced
several code optimizations. When the code was not available,
we contacted the authors, but we received either no answer or
limited support. Two approaches, Zeek [67] and Asm2Vec [14],
have been fully reimplemented, while CodeCMR was tested
by the authors due to the high complexity of the model and
several “hidden” variables not discussed in the paper.

Additional technical details of all our implementations,
together with information regarding our effort to contact the
respective authors and the considerations regarding the use
of pre-trained models, are available in [47].

We run all the experiments on a workstation equipped with
Ubuntu 18.04, Intel Xeon Gold 6230 (80 virtual cores @2.10
GHz), 128GB DDR4 RAM, and one Nvidia RTX2080 Ti GPU
(1350MHz, 11GB GDDR6, 13.45 TFLOPS FP32).

4.2 Dataset

We created two new datasets, Dataset-1 and Dataset-2,
which aim at capturing the complexity and variability of
real-world software, while covering the different challenges of
binary function similarity: (i) multiple compiler families and
versions, (ii) multiple compiler optimizations, (iii) multiple
architectures and bitnesses, and (iv) software of different
nature (command line utilities vs. GUI applications). We
use Dataset-1 to train the machine-learning models and both
datasets to test the evaluated approaches.

Dataset-1. Dataset-1 is composed of seven popular open-
source projects: ClamAV, Curl, Nmap, OpenSSL, Unrar, Z3,
and Z1ib. Once compiled, they produce 24 distinct libraries.
Each library is compiled using two compiler families, GCC
and Clang, with four different versions each, covering major
releases from 2015 to 2021 (additional details on the open-
source projects and compiler versions are provided in [47].)
Each library is compiled for three different architectures,
x86-64, ARM, and MIPS, in 32 and 64 bit versions (with a
total of 6 architecture combinations), and 5 optimization levels
00, 01,02, 03, and Os.

Following our definition of function similarity, we disabled
function inlining to compare functions originating from exactly
the same source code: function inlining is in fact an addition
of code into the original source code, and it could potentially
pollute our results and lead to misleading conclusions.

In total, this dataset consists of 5,489 binaries, with an
average of 228 combinations per binary project, and a total
of 26.8M functions. Following the criteria applied by several
seminal papers [20, 24], we filtered out the functions that
had less than five basic blocks (18.2M). 80% of the filtered
functions correspond to functions with two basic blocks,
and 93% of these have less than 30 assembly instructions.

The remaining 8.6M functions are the starting point for the
construction of the training, validation and testing dataset. The
Appendix includes additional information about the number
of basic blocks and instructions for the selected functions.

Dataset-2. Dataset-2 is built on top of the binaries released by
the authors of Trex [60], a very recent paper. In particular, we
selected 10 libraries out of 13 to avoid any intersection with
Dataset-1: Binutils, Coreutils, Diffutils, Findutils,
GMP, ImageMagick, Libmicrohttpd, LibTomCrypt, PuITy,
and SQLite. The dataset contains binaries already compiled
for x86, x64, ARM 32 bit and MIPS 32 bit, 4 optimization
levels (00, 01, 02, 03) and GCC-7. 5. Dataset-2 complements
our Dataset-1 with the purpose of i) validating the results of
the models of Dataset-1 on a diverse and large collection of
binaries, and ii) including the comparison with the recent Trex
approach. Indeed, Trex could not be pre-trained and fine-tuned
on Dataset- 1, because the emulator released by the authors [59]
only supports a subset of the architecture and bitness combi-
nations. Moreover, as detailed in our online material in [47],
Trex is extremely expensive to retrain, and we opted to use the
same model as the authors in their experiments on the same
set of binaries. We acknowledge the potential advantage of
Trex in this evaluation compared to the other models trained
on Dataset-1 (thus on a larger set of architectures), and we
keep this into consideration in our discussion.

Dataset availability. To the benefit of the community and to
ease future works in the area, we are releasing the full dataset
to the public, available in [47]. We also release the scripts and
patches we used to compile them so that future researchers
can re-create the dataset and build on top of our work.

4.3 Experimental Settings

We performed extensive experiments to evaluate the accuracy
of the selected approaches and several of their variants. To this
end, we identify six different tasks to evaluate: (1) XO: the func-
tion pairs have different optimizations, but the same compiler,
compiler version, and architecture. (2) XC: the function pairs
have different compiler, compiler versions, and optimizations,
but same architecture and bitness. (3) XC+XB: the function
pairs have different compiler, compiler versions, optimizations,
and bitness, but same architecture. (4) XA: the function pairs
have different architectures and bitness, but the same compiler,
compiler version, and optimizations. (5) XA+XO: the function
pairs have different architectures, bitness, and optimizations,
but the same compiler and compiler version. (6) XM: the
function pairs come from arbitrary architectures, bitness,
compiler, compiler versions, and optimization.

The first three tasks evaluate the techniques for those use
cases that are limited to a single architecture only, including
some practical applications of function similarity in malware
analysis and collaborative reverse engineering. The fourth task
is relevant for the analysis of firmware images cross-compiled



by using always the same compiler and compiler options. The
fifth task is designed to support Dataset-2, which is compiled
with only one compiler and compiler version. Finally, the last
task is the most challenging and includes comparisons across
the entire dataset. In our evaluation we also consider three
sub-datasets for XM: XM-S, XM-M, and XM-L, which include
small-sized functions (with less than 20 basic blocks), medium
(between 20 and 100), and large ones (more than 100 blocks).

Each task is evaluated according to two different tests: (i)
the area under curve (AUC) of the receiver operating charac-
teristic (ROC) curve, which is an aggregate measure of the
performance of a model across all the possible classification
thresholds, and (ii) two commonly used ranking metrics,
the mean reciprocal rank (MRR), and the recall (Recall @K)
at different K thresholds. Ranking measures are useful to
evaluate the model performances in those applications where
it is necessary to search candidates functions through a large
database, such as in the vulnerability research use case.

For the first test, we constructed a dataset of 50k positive
pairs and 50k negative pairs for each task, with a total of 700k
function pairs across Dataset-1 and Dataset-2. For the ranking
test, we selected 1,400 positive pairs and 140k negative pairs,
that is 100 negative pairs for each positive one.

Overall our tests cover 438,981 unique binary functions,
with the constraint of having at least five basic blocks. In
every task, the pairs are randomly sampled according to the
corresponding constraints (e.g., in cross-optimization, positive
and negative pairs belong to the same architecture).

To make our evaluation more meaningful, we opted to
remove duplicate functions (by checking for their names
and the hash of their instructions). We also note that this
“pair selection” aspect is crucial for a proper evaluation.
Unfortunately, several recent works use different ways to
select such pairs, making their training tasks significantly
easier or more difficult. For example, in [36], the researchers
generated negative pairs while keeping the same compiler
options. In another example (VulSeeker [25]) the negative
pairs are randomly generated and they do not enforce any
check on the compiler options as well as the presence of the
anchor function. These inconsistencies hinder the potential
for fair comparisons, and they are often overlooked.

By following the common practice in this research area,
we present the evaluation of the selected approaches in the
most generic way, using two specifically designed datasets.
We note that directly evaluating the approaches on a security
application is usually challenging, especially in the case of
vulnerability discovery and malware clustering, because it re-
quires to create an accurate ground-truth, which is the problem
that function similarity is trying to solve in the first place.

4.4 Fuzzy-hashing Comparison

This section discusses our in-depth investigation of the
two approaches based on fuzzy hashing: Catalogl [74] and

Table 1: AUC Comparison of Catalogl and FunctionSim-
Search (FSS) when varying only one variable at the time: Archi-
tecture, Bitness, Compiler, Optimizations, Compiler Version

Free variable

Description Arch Bit Comp Opt Ver
Catalog1 B +size 16 0.49 0.63 0.63 0.75 0.94
Catalog] B + size 128 0.43 0.76 0.85 0.92 0.99
FSS G 0.81 0.89 0.68 0.74 0.87
FSS G+M 0.66 0.88 0.78 0.83 0.97
FSS G+M+1 0.67 0.88 0.77 0.82 0.97
FSS w(G+M+1) 0.75 0.83 0.67 0.74 0.82

FunctionSimSearch [18].

Catalog1 uses raw bytes as input features and a different
signature size (i.e., number of hash functions): we show the
results of two variants, one with size 16 and the other with size
128. In contrast, FunctionSimSearch (FSS) uses a combination
of graphlets (G), mnemonics (M) and immediates (I): we did
different tests by incrementally enabling different types of
input features, including their weighted linear combination w,
as we found it in the original implementation (G:1.00, 1:4.00,
M:0.05).

Since fuzzy hashing approaches are notinfluenced by a train-
ing phase, we used them to perform a targeted evaluation of
how each compilation variable affects the comparison of binary
functions. Thus, for these approaches, we first perform multiple
experiments in which we vary one variable (i.e., compiler fam-
ily, version, options, architecture, and bitness) while we keep
the remaining ones the same. The results, in Table 1, make clear
that, when considering only one free variable at a time, even
simple approaches such as fuzzy hashes are effective: “raw”
bytes are confirmed to be good features for same-architecture
comparisons, while graphlets are effective in cross-architecture
comparisons. For Catalog1, the bigger the signature size, the
better the performances, but they are limited by the total num-
ber of hash functions included in the implementation.

We then evaluated these two approaches with the six tasks
presented earlier. Tables 2 and 4 show the results on Dataset-1
and Dataset-2: having multiple free variables at the same time is
amuch harder problem and simple approaches are not effective
anymore. In the XC task (Table 2), Catalog1 and FSS have iden-
tical AUC. For FSS, the graphlets-only (G) configuration is the
best in all the tasks except XC and XO, where using graphlets
with mnemonics (G+M) has higher AUC. Moreover, FSS also
seems to work better on bigger functions, which may be due to
the higher number of different graphlets that can be extracted.
Finally, in the XA task, FSS accuracy decreases when using ad-
ditional features such as mnemonics and immediates, and sur-
prisingly, the weighted linear combination of the three features
do not produce better results than other basic configurations.
Catalogl is the fastest among the two approaches, while FSS is
about 3 times slower due to a longer feature extraction phase.



Table 2: Comparison of Catalogl and FunctionSimSearch (FSS) on Dataset-1.

XM XC+XB

Description XC XC+XB XA XM small medium large MRRI10  Recall@1 MRR10  Recall@]
Catalogl B +size 16 0.66 0.60 0.48 0.54 0.54 0.53 0.54 0.08 0.07 0.25 0.23
Catalogl B +size 128 0.73 0.66 0.43 0.55 0.54 0.55 0.58 0.12 0.09 0.31 0.27
FSS G 0.72 0.72 0.69 0.70 0.70 0.71 0.77 0.26 0.20 0.29 0.23
FSS G+M 0.73 0.71 0.58 0.65 0.64 0.66 0.70 0.17 0.13 0.29 0.24
FSS G+M+I1 0.73 0.70 0.58 0.65 0.64 0.66 0.71 0.15 0.09 0.28 0.23
FSS w(G+M+1I) 0.69 0.69 0.65 0.67 0.66 0.68 0.72 0.21 0.16 0.23 0.17

4.5 Machine-learning Models Comparison

We evaluate all selected approaches by using a common
training dataset extracted from Dataset-1 (with the exception
of Trex [60]) and using a similar criteria to the XM task to
create positive and negative samples. However, it is important
to note that it would be possible to further improve the results
of each task by using task-specific training data. We did
perform this evaluation but we omit the results as we noticed
that training on the most generic data (XM) achieves overall
performances that are close to the best for each task.

Comparing machine-learning models, especially deep
neural networks, is a challenging task because several
variables may influence the final results, including the
model implementation and configuration (e.g., number of
layers or the type of recurrent neural network), the different
hyperparameters (e.g., the learning rate and the batch size),
the loss function, the optimizer, and the number of training
epochs. To be as uniform as possible in our comparison, all
models were trained with the same randomly generated data
extracted from 256,625 unique binary functions. Moreover,
we performed extensive experiments to evaluate different sets
of features, different model configurations, hyperparameters,
and loss functions. The results for each model can be improved
by using an extensive grid search approach and the results we
present can be used as a starting point for future works.

Table 3 and Table 4 show the results of the tested models
and their respective variants on the two datasets. Table 8
includes some generic information about the models and their
training, such as the number of parameters, the batch size, the
number of epochs, and the training time for each epoch.

Results show that among the models that produce a vector
representation of a function (i.e., an embedding) the GNN
from [40] achieves the best values in all the metrics and in all
the tasks. We also note how most of the machine-learning mod-
els perform quite similarly when compared on AUC, but dif-
ferently on ranking metrics (MRR10 and recall@1), as shown
in Figure 2. Then, regarding the other embedding models,
SAFE [49] provides better AUC than GNN with unsupervised
features [45], and in one specific configuration slightly better
AUC than Gemini [76]. For the approaches that perform direct
comparisons, the GMN from [40] is the best performing model
in all the tasks, while Zeek has a slightly lower AUC (except
for large functions), but much lower MRR10 and recall@1.

We now discuss in depth eight observations from our results.

Comparing Trex. Our results show that, on the XO task,
Trex has the same AUC and similar MRR 10 and recall@1
as Asm2Vec, as well as the other word2vec variants, which
is slightly lower than the one of GNN and GMN. This
consolidates the finding that language models are strong
in the same architecture tasks. However, differently from
Asm2Vec, Trex retains the same performances also in the XA
and XA+XO task, which shows the power of the transformer
in (cross language) cross-architecture setup. We confirm that
Trex improves SAFE performances in the XO task (0.94 vs.
0.90) and in the XA+XO task (0.94 vs. 0.91). Our tests also
show that the inference for Trex running on GPU (more details
in [47]) is faster than our multiprocess Asm2Vec implemen-
tation (3.92s vs. 8.51s for 100 functions), but it is slower than
SAFE running on CPU (3.92s vs. 1.46 for 100 functions).

Comparing different GNNs. Both Gemini [76] and
Lietal. [40] use GNNs with a different variant of the message
passing and aggregation layer [8,41]. Using the results from
the third and fourth block of lines in Table 3 and Table 4, we
compare the two variants using both basic block features (the
bag of words (BoW) of the opcodes) and no features. Results
show that the GNN variant of Li et al. provides a significant
improvement over GNN (s2v), the one used by Gemini, in all
the tasks. However, the execution time of two variants remain
similar (1.48s vs. 1.40s when using no features).

Comparing different feature set in GNN (s2v). Gemini [76]
uses a GNN model called Structure2vec (s2v) [8] with manu-
ally engineered features. Our goal is to understand how impor-
tant these features are with respect to not having a feature vector
at all or using another set of features such as the bag of words
(BoW) of the opcodes. Results in Table 3 and Table 4 show that
manually engineered features only perform better on small and
large functions in the XA task, and that the BoW of the opcodes
perform similarly in all the different metrics, and even have bet-
ter recall for different K values, as shown in Figure 2. Also, the
execution time is different (1.66s vs. 7.18s), due to a longer fea-
ture extraction phase in Gemini. This means that more complex
and difficult to extract features do not necessarily outperform a
more basic representation. A BoW of 200 opcodes has 20 times
the number of features of Gemini, which results in a larger input
matrix for the node neural network of GNN. We additionally



Table 3: Comparison of machine-learning models on Dataset-1.

XM
Description XC XC+XB XA XM small medium large MRR10  Recall@1
[67] Zeek (direct comparison) Strands 0.84 0.85 0.84 0.84 0.85 0.83 0.87 0.28 0.13
[40] GMN (direct comparison) CFG + BoW opc 200 0.85 0.86 0.86 0.86 0.89 0.82 0.79 0.53 0.45
[40] GMN (direct comparison) CFG + No features 0.86 0.87 0.86 0.87 0.88 0.85 0.84 043 0.33
[40] GNN CFG + BoW opc 200 0.86 0.87 0.86 0.87 0.89 0.84 0.76 0.52 0.44
[40] GNN CFG + No features 0.82 0.83 0.82 0.82 0.85 0.80 0.76 0.37 0.29
[76] GNN (s2v) CFG + BoW opc 200 0.81 0.82 0.78 0.81 0.82 0.78 0.74 0.36 0.26
[76] GNN (s2v) CFG + manual 0.81 0.82 0.80 0.81 0.84 0.77 0.79 0.36 0.28
[76] GNN (s2v) CFG + No features 0.69 0.70 0.69 0.70 0.70 0.69 0.75 0.12 0.07
[45] w2v + AVG + GNN (s2v) CFG + N. asm 150 0.79 0.79 0.74 0.77 0.78 0.75 0.73 0.24 0.16
[45] w2v + WAVG + GNN (s2v) ~ CFG + N. asm 150 0.79 0.79 0.76 0.77 0.78 0.76 0.76 0.29 0.20
[45] w2v + RNN + GNN (s2v) CFG + N. asm 150 0.79 0.80 0.79 0.80 0.82 0.77 0.80 0.27 0.17
[49] w2v + SAFE N.asm 150 0.80 0.81 0.80 0.81 0.83 0.77 0.77 0.17 0.07
[49] w2v + SAFE N. asm 250 0.82 0.83 0.82 0.83 0.84 0.81 0.82 0.22 0.09
[49] w2v + SAFE + trainable N. asm 150 0.80 0.81 0.80 0.81 0.83 0.76 0.74 0.29 0.16
[49] rand + SAFE + trainable N.asm 150 0.79 0.80 0.79 0.80 0.83 0.75 0.74 0.28 0.17
[14] Asm2Vec 10 CFG random walks 0.77 0.69 0.60 0.65 0.63 0.70 0.78 0.12 0.07
[38] PV-DM 10 CFG random walks 0.77 0.70 0.50 0.62 0.63 0.62 0.61 0.11 0.08
[38] PV-DBOW 10 CFG random walks 0.78 0.70 0.50 0.63 0.63 0.62 0.61 0.11 0.09
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Figure 2: Comparison of the recall at different K values for XO (left) and XM (right) tasks.

tested a BoW of 1024 opcodes but the results did not improve
significantly, which means that those additional features do not
contribute significantly to the representation of the function.

Finally, we wanted to test whether the use of instructions
embeddings as GNN features helps to increase the AUC,
as presented in [45]. Our results show that the instruction
embeddings on the normalized assembly do not have higher
AUC than bag of words of the opcodes or manual engineered
features (only the RNN basic block encoder achieves similar
AUC), MRR10 and the recall@1 are lower too and the training
time is drastically increased.

Modelling functions using a textual encoder. SAFE [49]

uses a sentence encoder based on instruction embeddings,
and the AUC is better than GNN (s2v) with unsupervised
features [45]. Compared to Gemini [76], the AUC is similar,
but MRR10 and recall@1 are lower. SAFE works better
on small functions and results do improve when increasing
the maximum instruction length from 150 to 250 (Table 3).
However, SAFE needs to confront the challenge of out-
of-vocabulary (OOV) words. As introduced in Section 2,
other approaches such as InnerEye [82] or Mirror [80] apply
different assembly normalization techniques to mitigate this
issue. To illustrate this challenge, we measured the impact of
OOV instructions in SAFE and we observed that x86-64 is
the most affected architecture by the OOV problem (less than



Table 4: Comparison of fuzzy hashing and machine-learning models on Dataset-2

AUC MRR10 Recall@1 Testing time (s)
Model name Description X0 XA XA+XO XO XA XA+XO XO XA  XA+XO Feat Inf Tot
100
[67] Zeek (direct comparison) Strands 0.92 0.94 0.91 0.42 0.45 0.36 0.28 0.31 021 722541 67.00 9.92

[40] GMN (direct comparison) CFG + BoW opc 200 0.97 0.98 0.96

0.75 0.84 0.71 0.66 0.77 0.61 1093.68 1005.00 1.83

[40] GMN (direct comparison) ~ CFG + No features 093 097 095 061 076 067 051 068 059 978.15 87600 1.63
[40] GNN CEG+BoWopc200 095 097 095 067 079 067 057 073 057 1093.68 11652  1.66
[40] GNN CEG + No features 091 096 093 054 071 059 044 062 049 978.15 10034 148
[76] GNN (s2v) CEG+BoWopc200 094 095 093 058 057 058 048 042 047 1093.68 11859  1.66
[76] GNN (s2v) CFG + Gemini 093 096 093 057 074 057 047 064 049 513991 9840  7.18
[76] GNN (s2v) CFG + No features 075 079 077 018 020 023 012 013 0.6 978.15 4087  1.40
[45] w2V + AVG + GNN (s2v) CFG +N. asm 150 090 088 087 046 031 042 038 018 033 107001 25895 1.82
[45] w2V + WAVG + GNN (s2v)  CFG +N. asm 150 087 087 08 037 029 036 029 017 027 107001 253.72 18I
[45] w2v+RNN+GNN (s2v)  CFG+N. asm 150 088 090 0.8 032 035 035 019 018 023 107001 68550 241
[49] w2v + SAFE N.asm 150 088 090 088 027 030 031 014 018 020 103123 3333 146
[49] w2v + SAFE N. asm 250 086 088 087 028 032 028 016 019 0.9 103123 3333 146
[49] w2v + SAFE + trainable N. asm 150 091 093 091 040 043 037 026 025 023 103123 3357 146
[49] rand + SAFE + trainable N. asm 150 090 091 090 028 033 031 014 017 021 103123 3381 146
[14] Asm2Vec Rand walks asm 094 069 075 060 007 022 049 002 0.8 978.15 523500 8.5l
[38] PV-DM Rand walks asm 094 066 072 064 008 023 051 005 019 97815 5239.00 8.52
[38] PV-DBOW Rand walks asm 094 066 072 063 007 023 050 003 020 978.15 3004.00 5.46
[60] Trex 512 Tokens 094 094 094 061 050 053 050 038 046 149358 1365.89 3.92
[74] Catalog_1 size 16 072 050 055 043 006 014 038 006 014 65470 000 090
[74] Catalog_1 size 128 086 048 057 050 007 017 042 006 014 82347 000 LI3
[18] FSS G 077 081 077 026 035 032 018 026 026 190346 46607 3.5
[18] FSS G+M 079 068 069 029 015 021 023 009 015 190346 466.07 3.5
[18] FSS G+M+1 080 068 069 030 016 020 023 010 0.4 190346 466.07 3.25
[18] FSS WG+M+1D) 083 080 078 043 030 036 036 023 029 190346 466.07 3.25

30% of the functions have no OOV words), probably due to
its CISC instruction set, followed by MIPS, and finally ARM,
with more than 40% of functions without a single OOV word.

Asm2Vec and other paragraph2vec models. Table 3 and
Table 4 show the comparative results of Asm2Vec [14] with
the PV-DM and PV-DBOW variants of paragraph2vec [38].
All the three models perform similarly, and compared to
GNN [40], using a specific mono-architecture approach
does not bring any advantage. We note that results are
strongly influenced by several factors, including the size of
the vocabulary of instructions, the number of random walks,
and several implementation details. During the training, we
selected 1M tokens (out of 1.9M) with a minimum frequency
of 5, where most of them are numerical offsets or hexadecimal
addresses. Lowering that threshold does improve the results,
but also increases the size of the vocabulary and the training
time. At inference time we did not change the vocabulary, even
though these unsupervised methods can benefit from a new
inference vocabulary without invalidating the results. In our
tests all the three models share the same vocabulary. We also
note that all the three variants achieve high AUC on scenarios
where only one variable is free, e.g., the XO task in Table 4,
but the AUC drops when multiple compilation variables are
considered together, e.g., the XC task in Table 3, where the
compiler, its version, and the optimizations change.

Comparing efficiency. We also kept track of how efficient

these approaches are for what concerns training (Table &)
and testing time, i.e., inference time (Table 4). We focus the
discussion on the second, because training the models is mostly
a one-time effort. Regarding the inference time, SAFE [49]
appears to be the fastest among the machine-learning models
with 1.46s to process 100 functions. GMN and GNN from [40]
have similar and among the lowest running times, however
GMN processes only a pair of functions in input. GNN (s2v)
with Gemini features [76] is 4 times slower than the version
with opcode features: the reason is the longer feature extraction
time. Zeek [67] inference time is also affected by long feature
extraction and processing time, and it is the slowest among the
approaches. GNN (s2v) with unsupervised features is slower
in the RNN variant, due to a longer inference time given by the
additional model complexity. Similarly, Trex [60] is affected
by a long inference time due to the complexity of the NLP
model. Finally, Asm2Vec [14] is among the slowest, because
itrequires 10 epochs of inference to extract the new function
embeddings. Interestingly, Asm2Vec is slower than the other
paragraph2vec [38] models due to the particular instruction
embedding construction.

CodeCMR/BinaryAl evaluation. For our evaluation we also
included CodeCMR, a recent paper by Tencent [79]. There
were several problems attempting to replicate this work and its
predecessor [78] (more details in [47]), but the authors were
kind enough to assist us with an evaluation on our dataset. We



Table 5: Comparison of CodeCMR/Binary Al with GNN and bag of words (BoW) of opcodes (opc) or IDA microcode (IR).

XM
Description XC XC+XB XA XM small medium large MRR10  Recall@1
[40] GNN CFG + BoW opc 200 0.86 0.87 0.87 0.87 0.90 0.84 0.78 0.58 052
[40] GNN CFG +BoW IR 80 0.87 0.87 0.87 0.88 0.89 0.86 0.81 0.62 0.56
[79] CodeCMR/BinaryAl  CFG + IR + Int + Strings 0.98 0.98 0.98 0.98 0.99 0.97 0.93 0.86 0.83
1.00 . . . .
bosd L emmmmmemmmTSTmSTTTTTTTSIomoooosesoooosemootT- N BinaryAl/CodeCMR model introduces several innovations.
: - P S . . . . vq g
090{ - g First, it merges in a single model several building components
g 08 e e v (i.e., a NLP encoder, a GNN, and two LSTMs), and it trains
T 0.80 -7 . . . .
£ 00 o o everything jointly by using an end-to-end strategy. Second,
e . . ..
070 ~4- GNN: CFG + BoW opc 200 the authors show in their paper that the training strategy (e.g.,
v GNN: CFG + BoW IR 80 . . . . .
065 —+- CodeCMR/BinaryAl using distance weighted sampling [73]) and loss function

0.60
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Figure 3: Comparison of the recall at different K values for
the XM task for GNN [40] and CodeCMR/BinaryAl.

acknowledge that this kind of evaluation does not align with
the re-implementation efforts we performed for the rest of
the approaches. However, we believe CodeCMR to be quite
interesting and promising, and we found it valuable to add it
in our paper. We also note that one other option would have
been to attempt to re-implement this approach, but we believe
it would be extremely challenging to be confident about the
faithfulness of our reimplementation, due to the high complex-
ity of the system and many “hidden” variables not discussed
in the paper. We now discuss insights from our evaluation.

Since the ultimate goal of their model is to match binary with
source code, to train and test our data they isolated the part of
the model that handles the function binary data only. We shared
with them a pre-processed version of a subset of our dataset
which consisted of ARM and x86 functions, 32 and 64 bit, that
preprocessed using IDAPro with the HexRays decompiler.”

The extracted data consists of an attributed CFG with the
IDA microcode instructions, integer number of ctree and the
strings from the functions data. To have a baseline comparison,
we run the GNN model from [40] using as basic block features
the bag of words of the 200 most frequent opcodes and the bag
of words of the 80 IDA microcode instructions.

Results are shown in Table 5. The GNN model that uses the
BoW of the IDA microcode instructions has a higher AUC
than the GNN model that uses BoW of the opcodes, but the
second one has higher recall for large K values (Figure 3). In
general, all the metrics for the BinaryAl/CodeCMR model
are higher than the rest of our tested models. If these results
are verified by independent studies in the community, this
may be a very promising direction of research. In fact, the

2We could process only a subset of our dataset because we did not have
access to a recent version of the HexRays MIPS decompiler license (BinaryAl
plugin requires IDA 7.3 or later version). Moreover, HexRays only supports
the decompilation of MIPS 32 bit code.

(e.g., triplet loss [66]) play an important role and can yield
significant performance improvements.

Notes about Kim et al. In a recent paper posted on Arxiv
by Kim et al. [36], the authors propose an interpretable
model and show that manual feature engineering can achieve
comparable results with “the state-of-the-art models,” namely
Vulseeker [25]. Their evaluation takes into account only one
variable change at a time (e.g., only the compiler changes,
while the architecture and the optimization level are fixed).
This is a simplified setting compared to our six evaluation
tasks, where, as shown in Table |, even simple fuzzy-hashes
approaches are effective. Moreover, the paper lacks any
meaningful evaluation against state-of-the-art techniques. For
example, the comparison with the ROC curve of Vulseeker
is theoretical, performed on a different dataset, and without
re-training the model. Another aspect that makes the compar-
ison very challenging is how the positive and negative pairs
are selected, as already mentioned in Section 4.3.

4.6 Vulnerability Discovery Use Case

As an example of a security application, we tested all models
on a vulnerability discovery task. To this end, we selected
ten vulnerable functions from OpenSSL1.0.2d, covering a
total of eight CVEs. As a target, we selected the libcrypto
libraries embedded in two firmware images: Netgear R7000
(ARM 32 bit) and TP-Link Deco M4 (MIPS 32 bit). Detailed
information about which vulnerabilities affect each firmware
image are included in [47]. We compiled the ten vulnerable
functions for four architectures (x86, x64, ARM 32 bit, MIPS
32 bit) and we performed a ranking evaluation, similar to the
one we have presented in the previous tests. When evaluating
the vulnerability discovery results, we only used as a query
the functions that are vulnerable for a particular firmware
image. Results are shown in Table 7: we use the MRR10 as a
comparison metric to evaluate how each model ranks the target
vulnerable function for each query function. Unsurprisingly,
the GMN model [40] with opcode features is the best perform-
ing one, however it requires analyzing each pair of functions,



Table 6: Vulnerability test ranks.

Netgear R7000
Model name Description x86 x64 ARM32 MIPS32
[67] Zeek (direct comparison) Strands 47:3,6:;45 67:4,3;36 3:4;2;14 95;5;12;141
[40] GMN (direct comparison) CFG + BoW opc 200 151152 1;1;30;7 1515151 1;1;157
[40] GMN (direct comparison) CFG + No features 4;1:1;3 5:1;52;2 2:1;1:4 7;1:1;12
[40] GNN CFG + BoW opc 200 3:32:1;18 9:6;1;40 4;1;1;44 97:5;1;138
[40] GNN CFG + No features 23:12:1;59 28:9:523:82 1:8;1;24 62:12;1;537
[76] GNN (s2v) CFG + BoW opc 200 8;1;5:36 9;1;14;8 2;1;1;6 35;5;1;7
[76] GNN (s2v) CFG + Gemini 432;3;1;155 372:6;66;60 356;2;1;77 339:15;1;308
[76] GNN (s2v) CFG + No features 1295;6;10;160 1161;537;169;475 1149;228;9;690 1164;68;852;198
[45] w2v + AVG + GNN (s2v) CFG + N. asm 150 37,76;5;5 3;35:45;39 30;1;1;70 76,74;54;100
[45] w2v + WAVG + GNN (s2v) CFG + N. asm 150 1111;50;275;5 195;8;158;14 1123;13;54;7 438;25,661;14
[45] w2v + RNN + GNN (s2v) CFG + N. asm 150 113;43;312;102 297,83;423;102 153;15;145;10 56;12;389;19
[49] w2v + SAFE N.asm 150 65;164;146;99 62;46;147;39 106;41;85;40 93;29;133;54
[49] w2v + SAFE N. asm 250 51;121;16;83 71;50;61;53 49;87;42;77 122;151;13;66
[49] w2v + SAFE + trainable N.asm 150 5,77,9:28 7:1;92;27 19;1:15:6 184;15:2;7
[49] rand + SAFE + trainable N.asm 150 55;161;105;15 24:51;175;30 134;64:50;36 319;180;54;10
[60] Trex 512 Tokens 41:4:1:3 10:3;1;2 32:4:1;2 24:16;1;1
[14] Asm2Vec Rand walks asm 1;13;109;58 2:36;11:449 2:1:1:1 31;1;257;1
[38] PV-DM Rand walks asm 15;7:9;1 13;13;395:454 119:1;1:1 2:71;272;2
[38] PV-DBOW Rand walks asm 25:7,22;7 24;19;242:19 109;2;1;1 1;14;519;10
[74] Catalog_1 size 16 452;868;1156;947 452;868;1156;947 20;849;4;1082 452;868;1156;947
[74] Catalog_1 size 128 454;868;1163;947 453;868;1156;949 60;1;1:87 452:36;1156;947
[18] FSS G 1172;4:4;507 1502;6;43;120 1004;23;2;283 1052;1;749;1117
[18]FSS G+M 1125;132;248;1495 258;112;360;870 100;172;1;505 67;1;621;741
[18]FSS G+M+1 352:61;97;1478 159;319:;364:;212 165;153;1;1396 1033;3;590;71
[18] FSS w(G+M+]) 1;1;10;1272 1;1;3;241 1;1;1;851 220;2;837;56

limiting the scalability of the approach. Trex [60] and the
GNN variant of Li et al. [40] provide the second-best results.
However, the FSS models with custom weights has surpris-
ingly the highest MRR 10 for the x64 comparison vs. Netgear
R7000. We used the weights shipped in the code, which have
been optimized for the OpenSSL comparison. This proves that
the optimization process that FSS implements has practical
use cases, however it does not extend to other configurations.
Table 7 also shows comparisons across different architectures,
in particular the ARM32 column for Netgear and the MIPS32
one for TP-Link show the same-architecture comparison. The
Netgear R7000 firmware is compiled for ARM 32 bit, while the
TP-Link Deco-M4 for MIPS 32 bit: this shows why Asm2Vec
has high MRR 10 values in the corresponding columns. Finally,
Table 6 contains the actual ranking results of the vulnerable
functions for the Netgear R7000 image, showing that quite
high MRR10 values may hide quite low rankings in practice.

5 Discussion

We now draw some conclusions from the previous results and
answer a number of research questions.

Results show that one machine-learning model, the GNN
from Li et al. [40], outperforms all the other variants in the
six evaluated tasks, achieving performances similar to the
less-scalable GMN version. Other embeddings-based mod-
els [45,49, 60, 76] show lower but similar accuracy. Zeek [67],

which is a direct-comparison approach, has higher AUC on
large functions. Asm2Vec [ 14] does not perform any better than
other models, and fuzzy hashing approaches are not effective
when multiple compilation variables change at the same time.

Which are the main contributions of the novel machine-
learning solutions compared to simpler fuzzy hashing
approaches? Deep-learning models provide an effective way
of learning a function representation (i.e., an embedding), forc-
ing a spatial separation between different classes of functions.
Differently from fuzzy hashing approaches, machine-learning
models achieve high accuracy even when multiple compilation
variables change at the same time and they benefit from the
advantage of large training datasets built on top of a reliable
ground truth defined by the compilation options. The usage
of a Siamese architecture [40, 45,49, 76] in combination with
a margin based loss [40, 79] introduced significant improve-
ments in the results. Moreover, GNNs [40, 45,76,79] are an
effective function encoder that can be used in combination
with other instruction level encoders [45, 79].

Which is the role of different sets of features? Results show
that the choice of the type of machine-learning model, in par-
ticular the GNN, and the loss functions are as important as the
features in input. Using basic block features (e.g., ACFG) pro-
vides better results, but there is a minimal difference between
carefully manually engineered features and simpler ones, such
as the bag of words of the basic block opcodes. Surprisingly, in-



Table 7: Vulnerability test.

Netgear R7000 TP-Link Deco-M4
Model name Description x86 x64 ARM32 MIPS32 x86 x64 ARM32 MIPS32
[67] Zeek (direct comparison) Strands 0.13 0.15 0.27 0.05 0.07 0.24 0.14 0.22
[40] GMN (direct comparison) CFG + BoW opc 200 0.88 0.54 1.00 0.79 0.67 0.73 0.70 0.78
[40] GMN (direct comparison) CFG + No features 0.65 0.43 0.69 0.54 0.44 0.47 0.32 0.32
[40] GNN CFG + BoW opc 200 0.33 0.32 0.56 0.30 0.49 0.56 0.36 0.61
[40] GNN CFG + No features 0.25 0.03 0.53 0.25 0.22 0.20 0.12 0.27
[76] GNN (s2v) CFG + BoW opc 200 0.33 0.31 0.67 0.34 0.39 0.28 0.36 0.59
[76] GNN (s2v) CFG + Gemini 0.33 0.04 0.38 0.25 0.11 0.26 0.28 0.11
[76] GNN (s2v) CFG + No features 0.07 0.00 0.03 0.00 0.00 0.00 0.06 0.00
[45] w2v + AVG + GNN (s2v) CFG + N. asm 150 0.10 0.08 0.50 0.00 0.05 0.06 0.03 0.18
[45] w2v + WAVG + GNN (s2v) ~ CFG + N. asm 150 0.05 0.03 0.04 0.00 0.00 0.03 0.04 0.27
[45] w2v + RNN + GNN (s2v) CFG + N. asm 150 0.00 0.00 0.03 0.00 0.03 0.11 0.08 0.14
[49] w2v + SAFE N.asm 150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[49] w2v + SAFE N. asm 250 0.00 0.00 0.00 0.00 0.04 0.02 0.07 0.03
[49] w2v + SAFE + trainable N. asm 150 0.08 0.29 0.29 0.16 0.04 0.16 0.24 0.09
[49] rand + SAFE + trainable N.asm 150 0.00 0.00 0.00 0.03 0.06 0.16 0.11 0.07
[60] Trex 512 Tokens 0.40 0.48 0.44 0.50 0.29 0.42 0.22 0.61
[14] Asm2Vec Rand walks asm 0.25 0.13 0.88 0.50 0.11 0.11 0.02 0.67
[38] PV-DM Rand walks asm 0.31 0.00 0.75 0.25 0.00 0.00 0.00 0.32
[38] PV-DBOW Rand walks asm 0.07 0.00 0.63 0.28 0.04 0.00 0.00 0.34
[74] Catalog_1 size 16 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.05
[74] Catalog_1 size 128 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.57
[18] FSS G 0.13 0.04 0.13 0.25 0.04 0.00 0.07 0.03
[18]FSS G+M 0.00 0.00 0.25 0.25 0.02 0.06 0.00 0.10
[18]FSS G+M+1 0.00 0.00 0.25 0.08 0.11 0.06 0.00 0.06
[18] FSS w(G+M+]) 0.53 0.58 0.75 0.13 0.06 0.00 0.00 0.00

Table 8: Models comparison on input features size, number of parameters, batch size, number of training epochs and training time.

Description Feature size NN params Batch size Train epochs Train/epoch (s)
[67] Zeek (direct comparison) Strands 1024 3,345,032 32 10 160
[40] GMN (direct comparison) CFG + BoW opc 200 200 181,634 20 16 1,026
[40] GMN (direct comparison) CFG + No features 7 163,106 20 16 857
[40] GNN CFG + BoW opc 200 200 172,418 20 10 944
[40] GNN CFG + No features 7 153,890 20 10 767
[76] GNN (s2v) CFG + BoW opc 200 200 75,266 250 5 1,238
[76] GNN (s2v) CFG + Gemini 7 38,210 250 5 1,068
[76] GNN (s2v) CFG + No features 7 38,210 250 5 555
[45] w2V + AVG + GNN (s2v) CFG + N. asm 150 100 28,002,066 250 5 2,254
[45] w2v + WAVG + GNN (s2v) ~ CFG + N.asm 150 100 28,002,966 250 5 2,140
[45] w2v + RNN + GNN (s2v) CFG + N. asm 150 100 28,966,866 250 7 8,628
[49] w2v + SAFE N.asm 150 100 41,377,002 250 5 491
[49] w2v + SAFE N. asm 250 100 41,377,002 250 5 789
[49] w2v + SAFE + trainable N.asm 150 100 97,269,002 250 10 553
[49] rand + SAFE + trainable N.asm 150 100 97,269,002 250 10 533
[14] Asm2Vec Rand walks asm 200 - - 10 1,096
[38] PV-DM Rand walks asm 200 - - 10 966
[38] PV-DBOW Rand walks asm 200 - - 10 549

struction embeddings [45] do not boost the performances of the
GNN models, however we think that extensive testing is needed
to evaluate other possible combinations. Zeek [67] shows how
dataflow information can boost the results, especially for large
functions. Finally, fuzzy hashing approaches are more sensitive
to the type of features, due to the lack of a training phase.

Do different approaches work better at different tasks? In
particular, is the cross-architecture comparison more dif-

ficult than working with a single architecture? Our evalua-
tion shows that most of the machine-learning models perform
very similarly on all the evaluated tasks, both in the same and
cross architectures. Moreover, it is not necessary to train them
on a specific task, since using the most generic task data (XM)
allows to achieve performances that are overall close to the best
for each task. This is not the case for fuzzy hashing methods.
For instance, FunctionSimSearch graphlet features have sim-



ilar performances in all the tasks, but their combination with
others does decrease the AUC in some tasks. However, not all
the approaches can be used in a cross-architectures comparison:
Asm2Vec [14] and the two paragraph2vec [38] models are lim-
ited to the same-architecture comparisons, due to the specific
unsupervised training approach, as well as Catalog1 [74].

Is there any specific line of research that looks more
promising as a future direction for designing new tech-
niques? Results show that deep-learning models have the
scalability and precision requirements for the different function
similarity tasks, especially due to the ability to learn a function
representation suitable to multiple tasks. Although the GNN
models provided the best results, there are tens of different
variants that need to be tested. Moreover, the combination of
GNN with assembly instruction encoders is another promising
direction [45, 78, 79]. Many of the previous works have
focused their effort on selecting different features and feature
abstraction levels, but most recent machine-learning models
only use the normalized assembly code or an intermediate
representation, leveraging the power of representation learning.
The effects of combining intermediate representations and
dataflow information must be studied as well. Furthermore,
we have observed that the selection of features and machine-
learning models are not the only aspects that influence the
performance of an approach. Some of these complementary as-
pects such as the training strategy and loss functions have been
barely discussed in the past and only recently explored. Li et
al. [40] introduced two alternative loss functions, an Euclidean
margin-based one, and an approximated Hamming similarity
for efficient nearest neighbor search. Following a similar direc-
tion, the latest research of CodeCMR [79] shows a significant
improvement in the results as a consequence of adopting a
norm weighted sampling method (a type of distance weighted
sampling [73]) in combination with a triplet loss [66].

6 Conclusions

This paper performs the first measurement study covering
more than five years of research works tackling binary function
similarity. We identified a number of challenges in the research
field, and how they make meaningful comparison difficult, if
not outright impossible. Our work aims at bridging this gap
and helping the community gain clarity in this research field.
We hope that by releasing all our implementations, datasets,
and raw results, the community will have a reference point
to start building new approaches and will be encouraged to
evaluate them against a common framework to better discern
which novel aspects are actually improving the state of the art,
and which aspects just appear to do so.
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