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Abstract—The task of content-type detection—which entails
identifying the data encoded in an arbitrary byte sequence—is
critical for operating systems, development, reverse engineering
environments, and a variety of security applications. In this
paper, we introduce MAGIKA, a novel AI-powered content-type
detection tool. Under the hood, MAGIKA employs a deep learning
model that can execute on a single CPU with just 1MB of memory
to store the model’s weights. We show that MAGIKA achieves
an average F1 score of 99% across over a hundred content
types and a test set of more than 1M files, outperforming all
existing content-type detection tools today. To foster adoption
and improvements, we open source MAGIKA under an Apache 2
license on GitHub and we make our model and training pipeline
publicly available. Our tool has already seen adoption by Gmail
and Google Drive for attachment scanning, by VirusTotal to aid
with malware analysis, and by prominent open-source projects
such as Apache Tika. While this paper focuses on the initial
version, MAGIKA continues to evolve with support for over 200
content types now available. The latest developments can be
found at https://github.com/google/magika.

I. INTRODUCTION

Content-type detection is a fundamental computing task

that identifies the data encoded in an arbitrary byte sequence.

This allows an application to distinguish source code (C++,

Python, etc.), media (PDF, JPG, etc.), binaries (EXE, ELF),

and a variety of other file formats. As such, content-type

detection impacts a wide range of downstream use-cases

including software development tools, security tools, browsers,

and media players. For example, development environments

(e.g., Visual Studio Code, VS Code for short) rely on content-

type detection to decide which syntax highlighters and plugins

to use. Security applications rely on content-type detection

for policy enforcement (e.g., email providers prohibiting exe-

cutable attachments), for forensic analysis and recovery, and

for routing samples to the most capable content-type-specific

threat analysis scanners (e.g., anti-viruses often have special-

ized scanners for binaries, scripts, or PDFs; these scanners are

too resource-intensive to be run on all samples).

The need for content-type detection stems from byte se-

quences lacking an intrinsic, trustworthy indicator of their

underlying file format. While some approaches to built-in

indicators exist—such as file extensions, MIME types, magic

bytes, and metadata—they can easily be omitted when a file’s

Fig. 1: Example of the frailty of signature-based content-type detec-
tion when applied to distinct code snippets taken from “JavaScript
Basics” of the Mozilla’s MDN [8]. file—which relies on regular
expressions for content-type detection—imprecisely labels each snip-
pet as ASCII text unless the spaces around the “=” sign are removed.
As we show, our proposed content-type detector MAGIKA overcomes
these robustness limitations.

content is copied or transmitted, or otherwise spoofed (e.g., to

evade security systems that prohibit certain content types).

The task of content-type detection was first tackled with

the file command in Bell Labs UNIX over five decades

ago [1]. Since then, developers have created a variety of tools,

the vast majority of which rely on manually-written signatures

(e.g., rules or regular expressions) that are updated as new file

types and versions emerge. Examples include the latest version

of file [2] (powered by libmagic [3]); exiftool [4];

and trid [5]. Unfortunately, signature-based approaches are

frail: a single whitespace change (or other subtle byte sequence

modification) can result in inaccurate content-type detection

as shown in Figure 1. Beyond signatures, guesslang [6]

employs a simple TensorFlow text model to distinguish source

code content types, which is integrated into VS Code [7].

In this paper, we discuss the design and implementation of a

novel AI-powered content-type detection tool called MAGIKA.

Built using a deep learning model, MAGIKA automatically

infers the content type of a byte sequence without any reliance

on human expertise with respect to the intricacies of different

file formats. The model takes as input three sequences of 512

bytes drawn from the beginning, middle, and end of a file’s

content; automatically identifies patterns unique to content

types; and outputs the most probable content type. We trained
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MAGIKA to identify 113 canonical content types using 24M

file samples sourced from GitHub [9] and VirusTotal [10]. We

find that MAGIKA achieves an average F1 score of 99% on a

holdout test dataset of 1.2M samples.

For comparison, we benchmark MAGIKA against four ex-

isting tools—file, exiftool, trid, and guesslang—

to compare their accuracy, speed, and overall resource usage

using the same test dataset of 1.2M samples. We find that

MAGIKA outperforms every existing tool, with a 4% F1 gain

over the best tool for binary content types and a 22% F1 gain

over the best tool for text content types, and 12% F1 gain

overall. The F1 gain increases, respectively, to 9%, 47% and

27% when considering all content types in our benchmark,

instead of just those supported by existing tools. For bulk

inferences, MAGIKA requires 5.77ms to yield a decision per

file, outperforming all other existing tools except for file
(0.75ms). Likewise, MAGIKA requires only 1MB of memory

to represent model weights and achieves the aforementioned

performance with just a single CPU; no GPU is required.

To foster wider adoption and accelerate improvements,

we open source MAGIKA under an Apache 2 license on

GitHub [11]. In terms of real-world deployments, MAGIKA

has already been integrated within Gmail and Google Drive

to determine the content type for hundreds of billions of

files every week [12], with VirusTotal to assist with malware

analysis, with prominent open-source projects such as Apache

Tika [13], and we are in discussions to integrate MAGIKA

with VS Code as a replacement for guesslang. This posi-

tive reception reflects the real-world improvements MAGIKA

provides over existing software engineering toolsets.

We note that this paper focuses on the initial iteration of our

approach, and that MAGIKA continues to evolve with support

for over 200 content types now available. The latest develop-

ments can be found at https://github.com/google/magika.

II. RELATED WORK

Content-type detection is a well-studied, longstanding prob-

lem. Before presenting our new approach, we discuss both

traditional approaches used by existing tools as well as re-

search proposals to integrate machine learning into content-

type detection.

A. Traditional approaches to content-type detection

The conventional approach to content-type detection relies

on manually-crafted signatures (e.g., regular expressions).

The most prominent tool employing signatures is file [2],

which is regarded as the default command-line utility for

detecting content types. file provides support for binary

file formats (which are particularly amenable to a signatures-

based approach), including highly-specialized formats (e.g.,

file formats employed in specific video games for storing

saved games, textures, etc.). file also possesses a range of

signatures for textual content types (e.g., C, Java, Python).

Anecdotal evidence suggests that file exhibits higher accu-

racy for binary formats than textual ones, but its performance

has not been systematically evaluated prior to our study.

By default, file outputs a textual description of the

detected content type, and a number of additional metadata.

For example, when processing a PDF file, file will output

its content type: PDF, but also the PDF version number,

how many pages it has, and so forth. Since this output is

challenging to parse programmatically, file also supports

outputting a MIME type. MIME types are easier to parse and

more codified than human descriptions, and thus, it may be

more appropriate when integrating file in automated pipelines.

However, dealing with MIME types has its set of challenges,

which we document in Section IV.

Other popular tools include trid [5] and exiftool [4].

The latter was originally designed to detect image con-

tent types exclusively, but it has since expanded its scope.

Apart from these general purpose content-type detection

tools, there are a number of specialized tools that trade

breadth for depth on a specific domain. For instance,

PEiD [14] is a tool dedicated to detecting PE packers, whereas

Detect-It-Easy [15] facilitates fine-grained inspection of

PE files and other executable formats. We omit these special-

purpose tools from our comparative analysis due to their

limited support of the content types under evaluation.

Lastly, numerous libraries re-implement a subset of ex-

isting features to offer content-type detection to vari-

ous programming languages, often aiming to be free

of dependencies to simplify integration. Examples in-

clude: mime-types [16], a library specializing in a lim-

ited number of content types, particularly for JavaScript

clients; PolyFile [17], a pure-Python implementation of

libmagic; filetype [18], a GoLang library for file type

identification; filetype.py [19], a Python library for file

type identification; and file-type [20], another (binary) file

format detection tool for the JavaScript ecosystem. Given the

derivative nature of many of these tools, we omit them from

our comparative evaluation as well.

B. Machine-learning approaches to content-type detection

Recently, researchers have proposed a number of approaches

that leverage machine learning to replace manual signatures.

Sceadan [21] proposes using support vector machines to model

features based on unigram and bigram frequencies. Fitzgerald

et al. [22] suggest natural language processing techniques for

file fragment classification, whereas Wang et al. [23] propose

using sparse coding and unsupervised learning to classify file

fragments in the context of memory forensics.

More recent approaches employ appropriately state-of-the-

art techniques such as recurrent and convolutional neural

networks [24], [25]. These proposals have not found wide

adoption, possibly due to their relatively low overall accuracy

(ranging from 53% to 84%), limited support for different con-

tent types (between 18 and 75, primarily binary file formats),

and competition from existing tools, which already provide

adequate support for binary file formats. As such, we treat

them as out of scope for our comparative evaluation.

The most recent and successful approach is

guesslang [6], an open-source tool that detects

2639



programming languages from a snippet of source code.

guesslang focuses exclusively on 54 textual content types

and employs a Wide & Deep TensorFlow model [26] for the

detection task [27]. Notably, VS Code utilizes guesslang
to infer the programming language when a user creates a

new file without specifying a file extension [7]. While the

original guesslang is currently unmaintained (last commit

in September 2021) and relies on deprecated TensorFlow

abstractions, VS Code developers maintain a Node.js client

that facilitates the testing of the underlying model [28].

III. DATASET

We curate a novel dataset of 26M files drawn from a diverse

set of 113 content types to act both as a benchmark for

evaluating existing content-type detectors and to train our deep

learning content-type detector. We describe the origin of this

data, our validation steps, and limitations with our approach.

Dataset sources. In real-world settings, the distribution of

content types varies from environment to environment. For

example, social media uploads are dominated by videos and

images, whereas digital-signing platforms predominantly re-

ceive PDFs. Rather than tailor our dataset to any single

environment, we incorporate a sample of content types that

may be present across a variety of environments including

source code, executables, documents, media, archives, and

more. We build a stratified dataset, in which every type

has equal representation. When reporting performance metrics

throughout this work, we break our results down per content

type to account for this sampling strategy. In practice, any

deployment environment can estimate the efficacy of MAGIKA

by taking a weighted average of our reported results, with

weighting taking into account the frequency of content types

within a specific setting.

To gather our stratified samples, we identified GitHub [9]

(a popular source code development platform) and VirusTo-

tal [10] (a popular binary and file scanning platform) as two

promising sources, as each covers a complementary set of

content types: GitHub includes mostly text-based files such

as source code (e.g., C/C++, Java, Python), configuration files

(e.g., JSON, YAML, INI), and a variety of text files for

documentation (e.g., Markdown, RTF). Conversely, VirusTotal

includes file archives (e.g., ZIP, TAR), binaries (e.g., EXE,

DLL, ELF), as well as documents (e.g., PDF, DOC, XLS).

Content types. We selected prevalent content types based on

available public metrics. Using a public mirror of GitHub

designed for large-scale analysis [29] and VirusTotal’s public

API [30], we first calculate, for each, the top 50 most promi-

nent file extensions across both platforms. We then identified

the associated content type, if any, for each of these file

extensions.1 Given the potential biases of our data sources,

due to which potentially relevant content types do not appear

in the most-frequent file extensions, we augment this list

1Not all file extensions are associated to a content type: for example, a
significant portion of samples on VirusTotal have the .file or .virus
extension which is not indicative of any content type.

by consulting existing resources [31]–[33] and adding file

extensions if at least one of the authors believed to be critical

to make a first release of practical utility.

In total, we consider 128 file extensions in our study. As

a simplification, we manually group some extensions into a

single category. For example, we group both JPEG and JPG

into a JPEG content type. Similarly, we group both EXE and

DLL into a PEBIN content type. As a notation mechanic,

we format these canonical content types as TYPE throughout

this paper, whereas we refer to file extensions as TYPE.

This process reduces our final set of categories from 128 file

extensions to 113 canonical content types. Of these, 70 are

binary content types and 43 are text content types. The full

list of selected content types is available on the Magika GitHub

repository [11].

We consider our selection of content types to be sufficiently

large and diverse to demonstrate the generalizability of our

approach. We also note that a more recent version of MAGIKA,

available on GitHub, already supports more than 200 content

types.

Sampling & validating content types. For each content type,

we query GitHub and VirusTotal to obtain a random sample

of files associated with the content type’s file extensions.

To minimize the risk of mislabeled content types in our

ground truth, we perform a number of validation checks before

adding a sample to our dataset. We specifically avoid using

existing content-type detection tools as part of our validation,

otherwise, we might oversimplify content-type detection (in

the case of requiring agreement across all tools); or propagate

detection errors (in the case of trusting one tool above others).

We use four heuristics for validation: file size, magic bytes

(for binary files), character encoding (for text files), and file

trustworthiness. For file size, we require any sample in our

dataset to consist of at least 16 bytes. For magic bytes, we

apply a set of necessary but not sufficient rules to validate a file

extension. Note that these rules are, by design, straightforward,

as we would otherwise risk the introduction of biases in

our dataset. For example, all PEBIN (the main Microsoft

Windows executable format) must start with the string MZ
(0x4D 0x5A). Not all files starting with MZ are PEBIN (e.g.,

they could be textual files which happened to start with the

characters MZ), but if a sample’s file extension claims to be

an EXE or DLL, we verify this condition holds. For text

files—where checks on magic bytes are not applicable—we

merely verify the encoding to ensure the file contains only

text characters. Finally, for samples from VirusTotal, we ensure

that no anti-virus engines flags the sample as malicious due

to such samples having an increased risk of obfuscated types.

Independent of these workflows, we also create synthetic
samples for two content types: UNKNOWN and TXT. For

UNKNOWN, each sample consists of a random byte sequence

of arbitrary length. For TXT, each sample consists of a random

string of text characters of arbitrary length. These synthetic

samples are used as a form of data augmentation to train the

model. We do so to help the model handle files with content
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types it has not been trained on, following best practices: rather

than forcing the model to choose 1 of N valid content types,

it can select UNKNOWN. We empirically observed that this

approach has a negligible impact on accuracy on our dataset

(<0.05% accuracy improvement). Nevertheless, in adherence

to best practices, we adopt this technique as it does not

introduce any disadvantages. There are additional technical

details we omit for space constraints, but the interested reader

can find complete information in our open-source release.

Final dataset. Our final dataset consists of 26.5 million

samples. We randomly split these into a training, validation,

and testing dataset. The latter serves as a uniform benchmark

for all content-type detection tools, including our deep learning

model, but is never exposed to our model during training,

nor has it been used to select the model hyperparameters or

thresholds (for which we used the validation split, following

best practices). In total, we selected 10K samples per content

type for our testing benchmark (with more than 1M samples in

total, making our testing dataset large enough to obtain robust

evaluation metrics), 10K samples for model validation, and

10K+ samples for model training (capping at 1 million per

content type). There are two exceptions to this: for ISO and

ODP content types, we have only 14K samples total. As we

show later, this does not have a material difference on our deep

learning detection accuracy. In total, our testing benchmark

consists of 1.2 million samples; our training dataset consists

of 24 million samples; and our validation dataset consists of

1.2 million samples.

Limitations. As with any measurement or machine learning

study, our methodology incurs a number of limitations. First,

our dataset consists of only 113 content types. We acknowl-

edge the selected list is necessarily incomplete and may not

encompass content types relevant to all deployment enviro-

ments. While there is a long tail of many other content types

in use today, acquiring and validating a representative sample

is prohibitively expensive—in terms of manual overhead. As

such, we focus on selecting a diverse and large enough number

of content types to prove the generalizability of our deep

learning approach on the most popular content types, leaving

the extension of our technique to a more comprehensive set of

content types to future work with the open source community.

Second, despite our best efforts at validation and sampling, our

benchmark dataset may contain mislabeled content types or be

biased towards the samples available on VirusTotal or GitHub.

As such, performance metrics may vary for other deployments,

though our sample size should be suitably large to provide

insights into the limitations of existing content-type detection

tools, as well as our own.

IV. BENCHMARKING EXISTING TOOLS

We benchmark the performance of existing content-type

detection tools to motivate the need for more robust detection.

Our measurements rely on the 1.2M samples in our test

benchmark dataset. The dataset includes samples of various

sizes, as shown in Figure 2. As part of our evaluation,

Fig. 2: CDF of the sample sizes in our benchmark dataset.

we assess both the number of content types supported per

tool (overlapping with the types in our benchmark) and the

accuracy of predictions per tool. As we show, the best existing

tool achieves an F1 score of only 88%, with no single tool

supporting all of the content types we evaluate.

A. Tools Selection

Our benchmark evaluates four popular content-type detec-

tion tools used for a variety of applications:

• file [2]: the default command line tool for detecting

content types for a variety of files. We note that file
can be optionally queried to return the MIME type, which

we also benchmark as the two modes can yield distinct

results (denoted file-mime).

• exiftool [4]: a tool originally developed for detecting

image content types, but that has since expanded to a

variety of binary and text content types.

• trid [5]: a tool for detecting a wide range of content

types.

• guesslang [6]: a tool for detecting the programming

language based on an excerpt of source code.

We select the first three because they represent the status-

quo: they are based on well-established signatures-based ap-

proaches, readily maintained, and are widely adopted. We

select guesslang as a representative of emerging content

type detection tools based on machine learning. guesslang
is unique as it focuses exclusively on textual content types, and

is robust enough for real-world deployment in VS Code [7].

B. Metric selection

For each tool, our benchmark assesses the precision and

recall of inferred content types compared to the golden labels

of our test dataset. Given this is a multi-class classification

problem, we estimate per-type precision as: TP/(TP + FP).
Here, a true positive (TP) indicates the tool predicts the correct
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golden label,2 while a false positive (FP) indicates the tool

predicts a specific content type, but in fact the golden label

is any other content type. We calculate per-type recall as:

TP/(TP + FN). Here, a false negative (FN) means a tool

failed to detect a sample as the golden canonical content

type, predicting any other label. For ease of presentation, we

simplify these metrics into an F1 score, which provides equal

weight to both per-type precision and recall:

F1 =
2 · Precision · Recall

Precision + Recall

We calculate this F1 score per content type and then average

F1 scores across text content types, binary content types, and

overall content types to provide a variety of assessments on

how well existing tools perform.

C. Automating Large-Scale Evaluations

The text string outputs of existing content type detection

tools are not designed for cross comparison. As such, we

develop a harness to programmatically query millions of

samples while normalizing the outputs to match one of the

113 canonical content types in our benchmark.

Normalizing detected content types. Unfortunately, there are

no canonical naming conventions for content types across

tools—or even the same version of the same tool. Nor is

there a hierarchy of how content types relate. For example,

valid command line outputs of file for XML documents

include XML document, XML 1.0 document, and XML
1.0 document text, among others. We also find that

different versions of the same tool will silently update naming

conventions. For example, file silently changed the output

for JavaScript files from “Node.js script text executable” to

“Node.js script executable,” dropping the “text” keyword, and

potentially breaking automated workflows [34].

Similarly, we find that the MIME types generated

by tools, despite being machine-oriented, also do not

follow canonical naming conventions, for several reasons:

MIME types change over time (e.g., text/x-markdown
vs. text/markdown [35]); tools (silently) update

their output (e.g., for PEBIN, file 5.41 outputs

app/x-dosexec, while file 5.44 outputs

app/vnd.microsoft.portable-executable);

some content types have multiple valid MIME types (e.g., for

XML, both application/xml and text/xml are valid);

tools databases have typos (e.g., text/pyton), or arbitrary

variations (e.g., text/python37 vs. text/python).

We used a manual, iterative process to address all naming

discrepancies. For each tool, we gathered the default command

line outputs for every file in our benchmark. We then grouped

these by output frequency, mapped the most popular types to

2Given multiple fine-grained content types may be associated with a
canonical content type (e.g., JavaScript and TypeScript → JAVASCRIPT), we
treat a prediction as accurate if it matches any fine-grained content types in
our mapping.

Tool name # Binary types # Text types # All types
(Of 70) (Of 34) (Of 113)

file 66 31 97
file-mime 64 27 91
exiftool 38 14 52
trid 68 23 91
guesslang 0 29 29

TABLE I: Number of content types in our benchmark that are
supported by existing content-type detection tools.

one of our 113 canonical content types using a set of hand-

written rules, and iteratively updated the set of rules until 99%

of the default outputs mapped to a canonical type. In the case

a tool produced a content type outside our canonical set, we

flag it with a special error code.

Enumerating supported content types. Of the tools we

evaluate, only exiftool and guesslang provide a list

of supported content types. To determine which tool supports

which content type, we use the normalized outputs over every

sample as previously discussed. If a tool never flags any

sample as one of our canonical content types, we make a

simplifying assumption that it does not support that content

type. This provides a fairer comparison with existing tools:

we omit unsupported samples from some of our metrics,

rather than giving a tool an F1 score of 0% for such content

types. Table I shows a breakdown of the content types in our

benchmark supported by existing tools across text, binaries,

and overall.

D. Results

We report a high-level summary of our benchmark results

for each existing tool in Table II. For space reasons, we share

per-content type results for only a sample of the 113 content

types we benchmark in Table III. Full results can be found

on the GitHub repository [11]. Overall, if we restrict our

view to content types supported by each tool, we find that

file-mime achieves the best performance with an average

F1 score of 88%—with exiftool and trid scoring just

1% lower. For text exclusively, guesslang achieves the best

performance with an average F1 score of 77%. For binaries

exclusively, file-mime achieves the best performance with

an average F1 score of 96%. As we demonstrate shortly,

MAGIKA is able to outperform all of these tools, achieving an

overall average F1 score of 99%. We explore the performance

of each existing tool in detail below.

file and file-mime. We find that file is highly perfor-

mant for supported binary content types, with an average F1

score of 96% when using the MIME flag, and 92% otherwise.

However, its accuracy decreases for some specific binary

types, such as APK (80%), JAR (64%), or DMG (4%). For

supported text types, the average F1 score drops to 68%, likely

due to the limitations of signatures when applied to text. We

find the accuracy of supported text content types can vary

widely, with an F1 score of 88% for RUBY, 70% for LISP,

and just 1% for POWERSHELL. Support is also missing for
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Content Type Metric f
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Binary – supported types 92% 96% 93% 93% -
Text – supported types 67% 68% 70% 68% 77%
Overall – supported types 84% 88% 87% 87% 77%

Binary – all types 87% 87% 50% 91% 0%
Text – all types 48% 42% 22% 35% 52%
Overall – all types 72% 70% 39% 70% 19%

TABLE II: Performance of existing content-type detection tools—
measured as an F1 score—averaged across all binary, text, and overall
content types. For fairness, we include two scopes for our metrics:
performance restricted to supported content types, and performance
on all content types.

some programming languages, such as RUST and SCALA. We

note that the MIME flag is critical for some types, e.g., the

accuracy drops from 100% to 1% for DOC without the flag.

exiftool and trid. We find that trid and exiftool
provide similar overall accuracy, with an average F1 score of

87% each. However, trid supports far more content types

(91) than exiftool (52). Both trid and exiftool see

drops in accuracy for text content types, with average F1

scores falling to 70% and 68% respectively. For instance,

trid produces inaccurate inferences for JSON (9%), SQL

(6%), and YAML (<1%) despite supporting each content type.

Likewise, exiftool struggles with PYTHON (22%) and

RUBY (3%) among other text content types. As with file,

the high variance of F1 scores makes it challenging for clients

to understand the quality of content-type detection from a tool

absent benchmarks.

guesslang. As previously mentioned, guesslang focuses

exclusively on text content types, achieving an average F1

score of 77% for supported types. While guesslang is

highly accurate for some programming languages like RUST

(97%) or SCALA (92%), it nevertheless struggles with HTML

(60%) and XML (31%) among others. One limitation specific

to guesslang is that it does not support an “unknown”

verdict. As such, it still predicts a random, incorrect content

type for our synthetic TXT samples. We note that VS Code

developers ran into this exact problem, as discussed in a

GitHub issue [36]. Instead, VS Code implements a number

of heuristics to artificially penalize automatic recognition of

content types prone to false positives [37].

V. MAGIKA

In light of the limitations of existing content-type detectors,

we design and train a new deep learning classifier called

MAGIKA that distinguishes between content types without the

need for signatures created by experts.

A. Requirements

We design MAGIKA to support two distinct deployment

scenarios with a single model: 1) a command line tool that

Content Type f
i
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e

f
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-
m
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e
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t
o
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l

t
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i
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g
u
e
s
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l
a
n
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APK 80% 80% - 83% -
ASM 21% 21% - - 90%
ASP - - - 80% -
BATCH 65% 65% - - 38%
BMP 100% 100% 100% 98% -
C 59% 59% - - 91%
CS - - - - 96%
CSS - - - - 84%
CSV 75% 75% - - 56%
DMG 0% 4% - 77% -
DOC 1% 100% 99% 98% -
DOCX 99% 99% 65% 100% -
ELF 100% 100% - 63% -
GO - - - - 95%
HTML 58% 58% 81% 73% 60%
INI 2% 2% - 46% 28%
JAR 64% 64% - 74% -
JAVA 81% 81% - - 87%
JAVASCRIPT 81% 81% - - 88%
JPEG 100% 100% 100% 100% -
JSON 98% 98% 98% 9% 84%
MACHO 100% 100% - 100% -
MAKEFILE 62% 62% - - 95%
MARKDOWN - - - - 48%
PDF 100% 100% 100% 100% -
PEBIN 100% 100% - 56% -
PERL 74% 75% 75% 3% 80%
PNG 100% 100% 100% 100% -
POWERSHEHLL 1% - - - 91%
PYTHON 94% 87% 22% - 90%
RUBY 88% 88% 3% - 89%
SHELL 89% 89% 88% 61% 83%
SQL - - - 6% 82%
TXT 17% 15% 10% 1% 0%
UNKNOWN 75% 31% 5% 6% 2%
VBA - - - - 51%
XLS 12% 99% 90% 91% -
XLSX 100% 100% 97% 99% -
XML 31% 31% 35% 64% 31%
YAML - - - 0% 74%
ZIP 56% 56% 39% 77% -

TABLE III: Performance of existing content-type detection tools—
measured as an F1 score—per content type for a sample of content
types in our benchmark.

can replace established utilities, and 2) a bulk inference tool

that can scale to analyzing billions of samples per day. These

scenarios constrain how we approach accuracy, speed, and

resource utilization.

Accuracy. MAGIKA should provide equivalent or better ac-

curacy at distinguishing between the 113 content types in our

dataset. Furthermore, detection should depend exclusively on a

file’s content—regardless of the presence of a file extension or

metadata. As before, we use an F1 score to evaluate accuracy.

Speed. Bulk inference should return a decision within <10ms

per file, excluding any initialization overhead for loading a

model into memory. Command line users may be sensitive

to such initialization costs. As such, the total overhead of
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Fig. 3: Architecture of MAGIKA. The input and the output are
depicted in blue and green, respectively. The model’s layers are in
yellow. The layers in purple are used only in training. The numbers
next to the layers’ names indicate the size of their outputs.

initialization and inference should remain <100ms. This speed

also includes the time spent reading a file, which has design

implications for how to detect the content type of large files

(e.g., >100MB) without necessarily reading the whole file.

Resources. In order to maximize potential deployment sce-

narios, MAGIKA should meet our speed and accuracy re-

quirements even on a single CPU. This resource constraint is

atypical of machine learning, which often assumes access to a

GPU. However, we cannot expect command line users to have

access to a GPU. Likewise, requiring large-scale platforms

to dedicate GPU resources for the simple task of content

type detection would be prohibitively expensive, especially

considering the required scale (e.g., potentially billions of files

processed daily).

B. Model Architecture

We present the architecture of the deep learning model that

powers MAGIKA in Figure 3. The overall flow consists of

(1) transforming the contents of a file into a fixed-sized vector

representation; (2) processing the vectors via a neural network;

and (3) interpreting the model outputs to predict the most

probable content type.

Inputs. The model’s inputs consists of three vectors that

encode a sequence of 512 bytes selected from the beginning,

middle (taken from the center of the file, with no randomness),

and end of an input file. We encode each byte as an integer

in the range [0, 255]. To maximize the utility of the inputs

made available to the model, we strip any leading or trailing

whitespace from the beginning and end of a file’s contents

before selecting bytes for encoding. As the model’s input has

constant size (i.e., 3x512 integers), if an input file is too small,

we pad the encoding with a special character (represented by

the integer 256). We then concatenate the three input vectors

to form a single vector of 3x512 integers, which we one-hot

encode and embed into a 128-float vector using a Dense layer.

While we considered using longer sequences, or more

sequences of bytes from a file, in practice this incurs additional

resource requirements and slows down processing due to

having to seek over more portions of the input file. By using

Fig. 4: Validation loss and validation accuracy as the training pro-
gresses in terms of the number of epochs. We find accuracy increases
up to around 30 epochs.

a fixed size input rather than a whole file, we ensure inference

in constant time. Despite limiting the model’s visibility, we

demonstrate we can achieve robust accuracy.

Trunk. The model trunk consists of two components. First,

the output of the previous Dense layer is reshaped to 384x512

dimensions, effectively reorganizing the previous output into

small, four-byte chunks. Each chunk is represented by a 512

dimension vector that the model can treat as a single entity

instead of having to consider each byte separately, which we

found to improve both performance and efficiency. Then, the

model contains two 256-dimensional Dense layers with gelu
activation [38]. A global max pooling layer [39] performs

downsampling and reduces the dimensionality back to 1D.

During training, we apply layer normalization [40], a 10%

dropout rate [41], and a 10% of spatial dropout rate [42] for

regularization throughout the model.

This final model represents hundreds of design iterations

across architectures that are simple enough to be small and

fast on a CPU. We also ran extensive hyperparameter tuning

experiments (using the validation dataset) and tested various

model configurations that evaluated the embedding dimension;

the size of the Reshape layer; the number, size, and activation

of the Dense layers; the normalization type; and the amount

of dropout applied before converging on this specific design.

Outputs. The final Dense layer uses softmax activation [43]

with size equal to the number of canonical content types in our

dataset. The output vector represents a probability distribution

over each of the potential content types. We can select the

most likely output with an argmax function [44], or apply

individual confidence thresholds per content type, ultimately

yielding the single most likely content type among those that

meet a minimum confidence threshold.

C. Training

We trained the MAGIKA model using Categorical Cross-

Entropy loss which is suited for multi-class classification
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Fig. 5: Average F1 Score (after one epoch of training) with increasing
number of samples per content type, across binary, text, overall
content types.

settings, with Adam as the optimizer (batch size = 256,

learning rate = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e−07).

Additionally, we use CutMix [45] for data augmentation,

although our experiments did not highlight a significant boost

in validation accuracy. However, since CutMix is used only

during training and does not affect model inference, we con-

tinue using a 5% rate for CutMix because it has no downsides

and could make the model more robust to out-of-distribution

samples.

We trained the model on a machine with a 16-Core AMD

Ryzen 9 7950X CPU, one NVIDIA GeForce RTX 4090, and

126GB of RAM. We implemented the model and training

pipeline in TensorFlow [46] and Keras [47]. The training

pipeline handles hundreds of millions of examples in a scalable

manner, with dataset sharding and shuffling to ensure that

batches are balanced across the different content types. We

train the final model for 30 epochs on the training dataset,

which took 6 days and 21 hours total on our setup.

Figure 4 shows how the loss and accuracy progress with

the number of epochs (computed on the validation split of the

dataset). Note how the model achieves a very high validation

accuracy already starting from the first few epochs. Figure 5

shows how the average F1 score increases with the number

of training samples per content type. Note how the average

F1 score for binary content types surpasses 99% with only

10K samples, but that more samples are needed to boost the

average F1 score among text content types.

D. Setting Confidence Thresholds

A classification threshold is the cut-off point whereby we

treat the probability output from our final Dense layer as

suitably high-confidence to yield a content-type prediction. Se-

lecting an optimal threshold involves balancing the trade-offs

between precision and recall, which is made more complicated

by a multi-class setting. For example, we empirically found

that a probability value of 0.80 was robust to assert that a file

Fig. 6: Precision-recall curve for a fixed threshold Θ applied to all
content type predictions. Note that the truncated scale for precision
and recall is different.

is HTML, whereas the same threshold for PDF yielded poor

accuracy.

We approached this problem by first considering a single

threshold for all content types. Figure 6 contains the precision-

recall curve for this scenario. The curve shows that while there

is a trade-off between precision and recall, we can configure

the model to obtain a precision and a recall that are both higher

than 99.5%.

As a further optimization, we instead compute per-content-

type thresholds. We determine each threshold by fixing pre-

cision at 99% and then choosing the maximum recall of the

remaining thresholds. At inference time, we then select the

argmax of content type predictions that exceed the type’s

custom threshold. If the model yields no confident outputs, we

output either TXT or UNKNOWN, depending on the nature of

the content type the model was the most confident with. We

discuss the overall performance of this approach shortly. In

practice, clients using MAGIKA can set their own confidence

thresholds, but by supplying tuned defaults we avoid a pain

point encountered by users of other tools [36], [37].

E. Performance Optimizations

Per our design requirements, MAGIKA must also be per-

formant in terms of the time it takes to load the model into

memory and yield a prediction. We implement a number of

performance optimizations, whereby a client can access our

deep learning model either through a command line or API. As

part of this, we use OnnxRuntime [48] (instead of Tensorflow

and Keras, which we use for training), because it is roughly

15x faster in loading the model (while having a similar model

inference time), thus significantly reducing the initialization

cost, which is critical for command line use cases. Likewise,

we support batching for clients performing multiple inferences

to parallelize processing. Our first CLI prototype has been

written in Python, but due to performance reasons, we have
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Δ Δ
Content Type Metric F1 (Supported) (All)
Binary 100% 4% 9%
Text 99% 22% 47%
Overall 99% 12% 27%

TABLE IV: Performance of MAGIKA—measured as an F1 score—
averaged across all binary, text, and overall content types. To simplify
comparison across tools, we calculate the delta (Δ) in F1 score
between MAGIKA and the most accurate existing tool per metric.

also implemented a version in C++ for production use-cases,

and a version in Rust as the iteration of our command line tool

(already available on GitHub [11]). We have also implemented

a prototype based on TensorFlowJS [49], which allows one to

run MAGIKA entirely within a browser.

VI. EVALUATION

In order to demonstrate the value of MAGIKA, we bench-

mark it against existing tools in terms of accuracy and speed.

A. Accuracy

We report a high-level summary of our benchmark results

for MAGIKA in Table IV. The reported accuracy metrics have

been computed using the testing dataset, which, following

best practices, has not been used for any step involving the

creation or tuning of MAGIKA. As a source of further insights,

we share per-content type results for a sample of the 113

content types in our benchmark in Table V. Full results can be

found in our source repository [11]. Regardless the context—

be it text, binary, or overall content types—we find that

MAGIKA outperforms all existing tools. This demonstrates the

generalizability of our architecture and approach.

Accuracy gains. For binary content types, we find that

MAGIKA yields a modest F1 gain of 4% when compared

to the best existing tool—file-mime—limited to content

types supported by both MAGIKA and file-mime. This

F1 gain extends to 9% if we consider all content types in

our benchmark. For text content types, MAGIKA yields even

better F1 gains of 22% over guesslang, limited to content

types supported by both MAGIKA and guesslang. This

extends to 47% for all content types in our benchmark. This is

especially true of MARKDOWN (45% gain), VBA (49% gain),

and XML (35% gain). Likewise, MAGIKA is better than all

models at exhibiting uncertainty, with an F1 score of 94%

for UNKNOWN (synthetic random byte sequences) and 84%

for TXT (synthetic random text strings).3 We also note that

MAGIKA has high accuracy (and often shows a double-digit

% gain in F1) even for content types that were shown to be

problematic for guesslang’s integration in VS Code, such

as BATCH, CSV, INI, MAKEFILE, SQL, and YAML [37].

No need for preprocessing. We find that MAGIKA is able

to handle various forms of packing and compression. For

3In practice, this TXT includes both TXT files as well as our synthetic
examples. This label is only valid if no other text content types apply (e.g.,
CSV, HTML, etc..)

Cont. Type F1 Δ

APK 99% 16%
ASM 99% 9%
ASP 99% 19%
BATCH 97% 32%
BMP 100% 0%
C 99% 8%
CS 100% 4%
CSS 99% 15%
CSV 99% 24%
DMG 100% 23%
DOC 99% -1%
DOCX 99% 0%
ELF 100% 0%
GO 100% 4%
HTML 94% 13%
INI 98% 52%
JAR 98% 25%
JAVA 99% 12%
JAVASCRIPT 99% 12%
JPEG 100% 0%
JSON 99% 1%
LATEX 100% 5%
LISP 100% 4%

Cont. Type F1 Δ

MACHO 100% 0%
MAKEFILE 100% 5%
MARKDOWN 92% 45%
PDF 100% 0%
PEBIN 100% 0%
PEM 100% 14%
PERL 99% 20%
PNG 100% 0%
POWERSHELL 99% 8%
PYTHON 99% 5%
RUBY 99% 11%
RUST 100% 3%
SCALA 100% 8%
SHELL 98% 9%
SQL 99% 18%
TXT 84% 67%
UNKNOWN 94% 19%
VBA 99% 49%
XLS 99% 0%
XLSX 99% -1%
XML 99% 35%
YAML 99% 25%
ZIP 99% 21%

TABLE V: Performance of MAGIKA—measured as an F1 score—
per content type for a sample of content types in our benchmark.
To simplify comparison across tools, we calculate the delta (Δ) in
F1 score between MAGIKA and the most accurate existing tool per
content type.

Fig. 7: Average accuracy vs. samples size for MAGIKA and existing
tools (for simplicity, the figure only shows tools with an average
accuracy higher than 50%).

example, DOC, XLS, PPT are all variants of the same Com-

posite Document File binary format. Likewise, DOCX, XSLX,

PPTX, APK, and JAR are all instances of Zip file formats. Most

existing tools deal with these content types by first unpacking

the file before applying any signature-based rules. Conversely,

MAGIKA requires no pre-processing or domain knowledge to

yield accurate predictions.

Accuracy vs. sample size. Figure 7 shows how the accuracy of

MAGIKA and existing tools change depending on the samples

size. The results show how MAGIKA achieves a stable 99%+

accuracy for most samples, with a slight degrade in accuracy

for very small samples of less than ∼100 bytes; upon manual
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inspection, we find that this loss of accuracy is due to MAGIKA

outputting a generic content type (such as TXT or UNKNOWN)

due to lack of strong confidence. It is also interesting to see

how the average accuracy of existing tools is also somewhat

stable across samples size, but with much higher variance.

Limitations. Our evaluation is affected by a few limitations.

First, our dataset is balanced across content types: this is

standard practice (especially when there is no one reference

real-world distribution), as it allows one to determine how each

content type is supported regardless of whether they are rare in

practice. This makes the results more transparent and easier to

inspect (e.g., when using an imbalanced dataset, a model with

poor support for a rare content type would still have a very

high average accuracy). However, we acknowledge that the

reported accuracy metrics are not directly applicable, but given

that MAGIKA is open-source, a user with a very unique setting

can tune and evaluate MAGIKA to its needs, for example by

mapping our results to her distribution—this is the standard

way to adapt models to an imbalanced environment.

The second limitation is that, as it is common with works

based on deep learning on large datasets, we did not per-

form cross-validation, as it is computationally prohibitively

expensive (as reported, a single training run takes about one

week). However, cross-validation is deemed as critical only

when dealing with very small datasets [50], in which a specific

“pick” of the testing dataset may be accidentally very biased;

this is not a concern in our situation, in which the testing

set alone has more than 1M samples. We also performed an

additional experiment in which we split our testing dataset

in 10 random smaller sets: the average accuracy is 99.19%

± 0.03%, showing very low variance, which supports the

robustness of our evaluation.

B. Speed

Per our design requirements, the time it takes to infer a

content type is equally important to accuracy. There are two

relevant dimensions to processing latency: initialization (e.g.,

loading a signature database or model) and inference (e.g., via

matching signatures or running a model). For MAGIKA we can

measure the breakdown between these two aspects directly,

but it is challenging for the other tools. Thus, we measure

the breakdown indirectly, by measuring the time required to

evaluate one sample at a time, and to evaluate multiple samples

all at once.

We evaluate all of the existing tools and MAGIKA as

follows. We select a fixed subset of our benchmark dataset

that consists of 1,130 samples: ten for each of the 113 content

types. This avoids any bias in the event a tool is faster for

one content type versus another (e.g., due to requiring decom-

pression or more complex signatures). As a first experiment,

we send a single request to each tool for each sample in our

evaluation. As a second experiment, we pass all samples as a

single request to each tool (e.g., we provide each sample’s path

as arguments to the same command line invocation). In both

cases, we limit the number of available CPUs to one (using the

Tool name One sample All samples
per request (ms) in one request (ms)

file 5.36 0.75
file-mime 5.30 0.67
exiftool 102.56 6.36
trid 137.08 51.57
guesslang 958.61 307.66
MAGIKA 86.73 5.77

TABLE VI: Average execution speed of MAGIKA and existing tools
when scanning 1,130 samples (113 content types, 10 samples per
type). The first column captures the initialization and inference cost
for content-type detection on a single sample (averaged across all
samples). The second column captures the amortized initialization
and inference costs of content-type detection for all samples in a
single request, normalized to the total number of samples.

taskset [51] utility). We estimate the overall running time

for both modes using hyperfine [52], executing each ex-

periment ten times and averaging the results (with three warm

up rounds, to minimize the impact of external factors, such

as caches). Our environment consists of an isolated docker

container within an idle virtual machine (an e2-highmem-8
instance on Google Cloud, with 8x AMD Rome CPUs and

64GB of RAM).

Table VI shows the results. We find that file is the

fastest tool (with or without the MIME flag), followed by

MAGIKA, exiftool, trid, and guesslang. Apart from

file, every tool has a non-negligible initialization cost on

the order of 100ms or more. For clients scanning files in

bulk, the amortized processing time of MAGIKA drops to

5.77ms, better than all existing tools apart from file. The

significant performance gain of MAGIKA over guesslang
(the only other tool to use a model) is likely due to the

latter’s reliance on TensorFlowJS [49], whereas MAGIKA uses

OnnxRuntime. We note that our implementation of MAGIKA

allows clients to take advantage of multiple CPUs without

having to wrap requests via parallelization, which is not true

of existing tools. For example, our client achieves an average

of 1.39ms per sample when running on 8 CPUs, while the

amortized processing time of the other tools remains the

same. While many other optimizations are feasible, our results

demonstrate that MAGIKA can quickly infer content types even

when executing a neural network exclusively via a CPU.

VII. REAL-WORLD ADOPTION

We released the MAGIKA model and a command line

wrapper as open source under an Apache 2 license [11]. We

share information on its reception and real-world adoption.

GitHub release and open-source community. Upon release,

MAGIKA reached 4K stars on GitHub in less than a week,

it was featured in GitHub trending projects, and it sparked

interest from many external contributors. Likewise, a number

of developers have reached out to integrate MAGIKA into their

workflows, such as for validating datasets, or for enhancing

security malware analysis pipelines (e.g., AssemblyLine [53]).

MAGIKA was also recently integrated in a very prominent

open-source framework, Apache Tika [13].
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Attachments scanner. We have worked with Gmail and

Google Drive to integrate MAGIKA into their attachment

and file upload scanners that detect and block malicious

samples [12]. These scanners process hundreds of billions of

files every week, underscoring the computational performance

of our approach. MAGIKA can be used to enforce content-

type policies on potentially obfuscated files (e.g., prohibiting

executable binary content types as attachments), and to route

specific samples to anti-virus scanners based on the content

type detected, which might otherwise be prohibitively expen-

sive to run on all samples. For example, we have estimated

that, on a daily basis, MAGIKA routes to MS Office-specific

malware scanners several millions samples that would have

otherwise not being scanned when using existing content type

detection systems or file extensions. MAGIKA has now been

running in production for several months, with no significant

concerns to be reported.

VirusTotal file scanner. The VirusTotal service has recently

integrated our work: every submission to VirusTotal is now

processed with MAGIKA, whose result can be seen in the

“Details” tab of each submission, alongside other content

type detection tools. This can be used by VirusTotal for

improved indexing and to optimize which files are sent to

the platform’s Code Insight functionality [54], which employs

generative AI to analyze and detect malicious code. For ex-

amples, MAGIKA’s accurate detection of POWERSHELL means

that VirusTotal can now isolate such files and specialize any

generative analysis exclusively to POWERSHELL.

VS Code. We have reached out to VS Code developers and

we have presented our model for consideration as a potential

replacement for guesslang. During our discussions, the

developers acknowledged the limitations and challenges en-

countered with guesslang, expressing openness to consider

alternatives. We subsequently engaged in a dialogue regarding

current feature gaps, primarily focusing on the necessity for

more fine-grained detection of specific content types (e.g., C

vs. C++, JAVASCRIPT vs. TYPESCRIPT, INI vs. TOML), which

we have been exploring with very promising results.

VIII. DISCUSSION

Our benchmark and integration stories highlight that

content-type detection remains an important problem. We dis-

cuss future design directions for further improving MAGIKA

and potential risks.

Handling new content types. We acknowledge that the cur-

rent version of MAGIKA supports a limited number of content

types, and that our selected list is not necessarily the most

representative in all scenarios. Moreover, new content types

are constantly emerging, requiring the authors of content-

type detection tools to continuously maintain and add new

signatures. MAGIKA sidesteps the necessity of understanding

the intricacies of different file formats (e.g., to write signatures

and to ensure they do not collide with previous signatures).

Instead, handling new content types with MAGIKA requires

two steps: (1) sourcing a sufficiently large number of training

samples; and (2) retraining the model with a new Dense output

sized to the number of supported content types. We find in

practice that MAGIKA can use as few as 10K samples to

achieve robust accuracy for binary content types, though text

content types require more samples. For our first iteration, we

have been relying on GitHub and VirusTotal, but, for some

content types, we have been exploring generating samples via

large language models. While re-training a new model can take

several days, it is not a concern as the process is automated.

Multiple valid content types. MAGIKA currently outputs only

a single inferred content type, which is enough for the vast ma-

jority of files. However, one could craft so-called polyglot files,

which are syntactically valid for multiple content types (e.g.,

interpretable as Python, PHP, and bash) [55]. Such polyglots

use unspecified holes in the file format specifications, making

accurate detection more challenging. More trivially, multiple

valid content types might arise due to a file containing code

snippets from different programming languages. In practice,

users of MAGIKA may be able to examine the top N most

likely content types, though we leave evaluating the accuracy

of MAGIKA on multi-content-type files to future work.

Adversarial risk. As with other content-type detection tools,

MAGIKA is potentially susceptible to evasion. Here, evasion

means tricking a content-type detection tool to infer an incor-

rect type, but where the intended application can nevertheless

process the file’s contents correctly. For signature-based rules,

this might be as simple as adding whitespace per our earlier

example in Figure 1. For MAGIKA, as the model is open

source, attackers might instead add small perturbations to a

file’s contents to cause our neural network to infer an incorrect

content-type. Adding such noise in a programmatic way,

while still yielding a file that is interpretable by the intended

application may be non-trivial; however, this analysis falls

under the area of adversarial machine learning, and significant

work is required to make the approach resilient to attackers

that specifically attempt to bypass the detection.

IX. CONCLUSIONS

In this work, we presented MAGIKA, a novel AI-powered

content-type detection tool. Trained on 24M samples and 113

canonical content types, we showed how our deep learning

architecture can achieve an average F1 score of 99%. Our

approach outperforms all existing content-type detection tools,

with a 4% F1 gain over the best tool for binary content

types and a 12% F1 gain over the best tool for text content

types. For bulk inferences, MAGIKA requires 5.77ms to yield a

decision per file with just a single CPU, making it suitable for

a variety of deployment scenarios. Our tool has already seen

adoption in the real world in a number of critical pipelines

and has drawn significant attention from the open-source

community. We have been working on a second iteration with

many improvements; the interest reader can follow the latest

developments on GitHub [11].
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